Machine learning with multimodal data for COVID-19.
Weijie Chen, Rui C Sá, Yuntong Bai, Sandy Napel, Olivier Gevaert, Diane S Lauderdale, Maryellen L Giger
Author Information
Weijie Chen: Medical Imaging and Data Resource Center (MIDRC), USA.
Rui C Sá: Medical Imaging and Data Resource Center (MIDRC), USA.
Yuntong Bai: Medical Imaging and Data Resource Center (MIDRC), USA.
Sandy Napel: Medical Imaging and Data Resource Center (MIDRC), USA.
Olivier Gevaert: Medical Imaging and Data Resource Center (MIDRC), USA.
Diane S Lauderdale: Medical Imaging and Data Resource Center (MIDRC), USA.
Maryellen L Giger: Medical Imaging and Data Resource Center (MIDRC), USA.
中文译文
English
In response to the unprecedented global healthcare crisis of the COVID-19 pandemic, the scientific community has joined forces to tackle the challenges and prepare for future pandemics. Multiple modalities of data have been investigated to understand the nature of COVID-19. In this paper, MIDRC investigators present an overview of the state-of-the-art development of multimodal machine learning for COVID-19 and model assessment considerations for future studies. We begin with a discussion of the lessons learned from radiogenomic studies for cancer diagnosis. We then summarize the multi-modality COVID-19 data investigated in the literature including symptoms and other clinical data, laboratory tests, imaging, pathology, physiology, and other omics data. Publicly available multimodal COVID-19 data provided by MIDRC and other sources are summarized. After an overview of machine learning developments using multimodal data for COVID-19, we present our perspectives on the future development of multimodal machine learning models for COVID-19.
Ann Intern Med. 2019 Jan 1;170(1):51-58
[PMID: 30596875 ]
Sci Rep. 2015 Dec 07;5:17787
[PMID: 26639025 ]
Front Cell Infect Microbiol. 2021 Sep 14;11:744903
[PMID: 34595136 ]
Int J Oncol. 2020 Jul;57(1):43-53
[PMID: 32467997 ]
Cell. 2020 Dec 10;183(6):1479-1495.e20
[PMID: 33171100 ]
Nat Commun. 2014 Jun 03;5:4006
[PMID: 24892406 ]
Eur Radiol. 2020 Dec;30(12):6797-6807
[PMID: 32607634 ]
J Pathol. 2020 Jul;251(3):228-248
[PMID: 32418199 ]
J Med Imaging (Bellingham). 2015 Oct;2(4):041007
[PMID: 26835491 ]
J Med Imaging (Bellingham). 2023 Nov;10(6):061104
[PMID: 37125409 ]
Radiology. 2015 May;275(2):384-92
[PMID: 25734557 ]
Nat Rev Cancer. 2022 Feb;22(2):114-126
[PMID: 34663944 ]
Sci Rep. 2017 Jan 31;7:41674
[PMID: 28139704 ]
Radiology. 2014 Oct;273(1):168-74
[PMID: 24827998 ]
J Gastrointest Cancer. 2020 Dec;51(4):1165-1168
[PMID: 32844349 ]
J Appl Physiol (1985). 2021 Mar 1;130(3):865-876
[PMID: 33439790 ]
J Magn Reson Imaging. 2016 Jun;43(6):1269-78
[PMID: 26663695 ]
J Vasc Interv Radiol. 2007 Jul;18(7):821-31
[PMID: 17609439 ]
J Magn Reson Imaging. 2018 Mar;47(3):604-620
[PMID: 29095543 ]
Radiol Imaging Cancer. 2020 May 15;2(3):e190039
[PMID: 32550599 ]
Semin Nucl Med. 2021 Jul;51(4):312-320
[PMID: 33288215 ]
J Physiol. 2021 Nov;599(22):4991-5013
[PMID: 34510457 ]
Am J Crit Care. 2022 Mar 1;31(2):146-157
[PMID: 34709373 ]
Cancer Cell. 2022 Aug 8;40(8):865-878.e6
[PMID: 35944502 ]
NPJ Digit Med. 2021 Jun 3;4(1):94
[PMID: 34083734 ]
Radiology. 2018 Jan;286(1):307-315
[PMID: 28727543 ]
Eur Respir J. 2019 Mar 28;53(3):
[PMID: 30635290 ]
Postgrad Med J. 2021 Jan;97(1143):34-39
[PMID: 32895294 ]
NPJ Digit Med. 2020 Oct 16;3:136
[PMID: 33083571 ]
Korean J Radiol. 2020 Jul;21(7):859-868
[PMID: 32524786 ]
Acad Radiol. 2021 Nov;28(11):1507-1523
[PMID: 34649779 ]
Semin Radiat Oncol. 2010 Jul;20(3):149-55
[PMID: 20685577 ]
J Med Imaging (Bellingham). 2015 Oct;2(4):041001
[PMID: 26839908 ]
NPJ Breast Cancer. 2016;2:
[PMID: 27853751 ]
Nature. 2022 Apr;604(7907):697-707
[PMID: 35255491 ]
Radiology. 2022 Dec;305(3):709-717
[PMID: 35608443 ]
Br J Radiol. 2016;89(1061):20151030
[PMID: 26864054 ]
Oncotarget. 2017 May 10;8(32):52792-52801
[PMID: 28881771 ]
BMJ. 2020 Apr 7;369:m1328
[PMID: 32265220 ]
Health Technol (Berl). 2021;11(6):1331-1345
[PMID: 34660166 ]
AJR Am J Roentgenol. 2012 Sep;199(3):654-63
[PMID: 22915408 ]
PLoS One. 2011;6(10):e25451
[PMID: 21998659 ]
Radiol Artif Intell. 2020 Mar 25;2(2):e200029
[PMID: 33937821 ]
Int J Mol Sci. 2020 Oct 29;21(21):
[PMID: 33138181 ]
Radiology. 2021 Jun;299(3):E262-E279
[PMID: 33560192 ]
EBioMedicine. 2019 Jul;45:70-80
[PMID: 31255659 ]
NPJ Digit Med. 2022 Aug 26;5(1):126
[PMID: 36028526 ]
Cancer. 2018 Dec 15;124(24):4633-4649
[PMID: 30383900 ]
Nat Rev Nephrol. 2021 Dec;17(12):792-793
[PMID: 34504319 ]
Bioinformatics. 2019 Jul 15;35(14):i446-i454
[PMID: 31510656 ]
Radiology. 2016 May;279(2):432-42
[PMID: 26653683 ]
Cancer. 2016 Mar 1;122(5):748-57
[PMID: 26619259 ]
IEEE Trans Pattern Anal Mach Intell. 2019 Feb;41(2):423-443
[PMID: 29994351 ]
Radiology. 2016 Nov;281(2):382-391
[PMID: 27144536 ]
Nat Med. 2022 Aug;28(8):1706-1714
[PMID: 35879616 ]
Cancer Res. 2012 Aug 1;72(15):3725-34
[PMID: 22710433 ]
AJR Am J Roentgenol. 2020 Sep;215(3):603-606
[PMID: 32319792 ]
Front Digit Health. 2022 Oct 06;4:1007784
[PMID: 36274654 ]
Int J Impot Res. 2022 Mar;34(2):152-157
[PMID: 35152276 ]
Med Phys. 2021 Sep;48(9):4711-4714
[PMID: 34545957 ]
Invest Radiol. 2020 Jun;55(6):332-339
[PMID: 32134800 ]
IEEE Trans Biomed Eng. 2023 Mar;70(3):909-919
[PMID: 36094967 ]
Sci Rep. 2022 Mar 2;12(1):3463
[PMID: 35236896 ]
Nat Biomed Eng. 2020 Dec;4(12):1197-1207
[PMID: 33208927 ]
Nat Med. 2021 Apr;27(4):601-615
[PMID: 33753937 ]
Radiology. 2012 Aug;264(2):387-96
[PMID: 22723499 ]
Transl Oncol. 2014 Oct 24;7(5):556-69
[PMID: 25389451 ]