A Review on Microbial Species for Forensic Body Fluid Identification in Healthy and Diseased Humans.

Mishka Dass, Yashna Singh, Meenu Ghai
Author Information
  1. Mishka Dass: Department of Genetics, School of Life Sciences, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, KwaZulu-Natal, South Africa.
  2. Yashna Singh: Department of Genetics, School of Life Sciences, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, KwaZulu-Natal, South Africa.
  3. Meenu Ghai: Department of Genetics, School of Life Sciences, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, KwaZulu-Natal, South Africa. ghai@ukzn.ac.za. ORCID

Abstract

Microbial communities present in body fluids can assist in distinguishing between types of body fluids. Metagenomic studies have reported bacterial genera which are core to specific body fluids and are greatly influenced by geographical location and ethnicity. Bacteria in body fluids could also be due to bacterial infection; hence, it would be worthwhile taking into consideration bacterial species associated with diseases. The present review reports bacterial species characteristic of diseased and healthy body fluids across geographical locations, and bacteria described in forensic studies, with the aim of collating a set of bacteria to serve as the core species-specific markers for forensic body fluid identification. The most widely reported saliva-specific bacterial species are Streptococcus salivarius, Prevotella melaninogenica, Neisseria flavescens, with Fusobacterium nucleatum associated with increased diseased state. Lactobacillus crispatus and Lactobacillus iners are frequently dominant in the vaginal microbiome of healthy women. Atopobium vaginae, Prevotella bivia, and Gardnerella vaginalis are more prevalent in women with bacterial vaginosis. Semen and urine-specific bacteria at species level have not been reported, and menstrual blood bacteria are indistinguishable from vaginal fluid. Targeting more than one bacterial species is recommended for accurate body fluid identification. Although metagenomic sequencing provides information of a broad microbial profile, the specific bacterial species could be used to design biosensors for rapid body fluid identification. Validation of microbial typing methods and its application in identifying body fluids in a mixed sample would allow regular use of microbial profiling in a forensic workflow.

References

  1. Hanssen EN, Avershina E, Rudi K et al (2017) Body fluid prediction from microbial patterns for forensic application. Forensic Sci Int Genet 30:10–17. https://doi.org/10.1016/j.fsigen.2017.05.009 [DOI: 10.1016/j.fsigen.2017.05.009]
  2. Hanssen EN, Liland KH, Gill P, Snipen L (2018) Optimizing body fluid recognition from microbial taxonomic profiles. Forensic Sci Int Genet 37:13–20. https://doi.org/10.1016/j.fsigen.2018.07.012 [DOI: 10.1016/j.fsigen.2018.07.012]
  3. Jung JY, Yoon HK, An S et al (2018) Rapid oral bacteria detection based on real-time PCR for the forensic identification of saliva. Sci Rep 8:2–11. https://doi.org/10.1038/s41598-018-29264-2 [DOI: 10.1038/s41598-018-29264-2]
  4. Akutsu T, Motani H, Watanabe K et al (2012) Detection of bacterial 16S ribosomal RNA genes for forensic identification of vaginal fluid. Leg Med 14:160–162. https://doi.org/10.1016/j.legalmed.2012.01.005 [DOI: 10.1016/j.legalmed.2012.01.005]
  5. Yao T, Han X, Guan T et al (2020) Effect of indoor environmental exposure on seminal microbiota and its application in body fluid identification. Forensic Sci Int. https://doi.org/10.1016/j.forsciint.2020.110417 [DOI: 10.1016/j.forsciint.2020.110417]
  6. Virkler K, Lednev IK (2009) Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int 188:1–17. https://doi.org/10.1016/j.forsciint.2009.02.013 [DOI: 10.1016/j.forsciint.2009.02.013]
  7. Neckovic A, van Oorschot RAH, Szkuta B, Durdle A (2020) Challenges in human skin microbial profiling for forensic science: a review. Genes (Basel) 11:1–16. https://doi.org/10.3390/genes11091015 [DOI: 10.3390/genes11091015]
  8. Hoshino T, Kawaguchi M, Shimizu N et al (2004) PCR detection and identification of oral streptococci in saliva samples using gtf genes. Diagn Microbiol Infect Dis 48:195–199. https://doi.org/10.1016/j.diagmicrobio.2003.10.002 [DOI: 10.1016/j.diagmicrobio.2003.10.002]
  9. Chaban B, Links MG, Jayaprakash TP et al (2014) Characterization of the vaginal microbiota of healthy Canadian women through the menstrual cycle. Microbiome. https://doi.org/10.1186/2049-2618-2-23 [DOI: 10.1186/2049-2618-2-23]
  10. Zou KN, Ren LJ, Ping Y et al (2016) Identification of vaginal fluid, saliva, and feces using microbial signatures in a Han Chinese population. J Forensic Leg Med 43:126–131. https://doi.org/10.1016/j.jflm.2016.08.003 [DOI: 10.1016/j.jflm.2016.08.003]
  11. Dobay A, Haas C, Fucile G et al (2019) Microbiome-based body fluid identification of samples exposed to indoor conditions. Forensic Sci Int Genet 40:105–113. https://doi.org/10.1016/j.fsigen.2019.02.010 [DOI: 10.1016/j.fsigen.2019.02.010]
  12. Giampaoli S, Berti A, Valeriani F et al (2012) Molecular identification of vaginal fluid by microbial signature. Forensic Sci Int Genet 6:559–564. https://doi.org/10.1016/j.fsigen.2012.01.005 [DOI: 10.1016/j.fsigen.2012.01.005]
  13. An J, Shin KJ, Yang WI, Lee HY (2012) Body fluid identification in forensics. BMB Rep 45:545–553. https://doi.org/10.5483/BMBRep.2012.45.10.206 [DOI: 10.5483/BMBRep.2012.45.10.206]
  14. Harbison S, Fleming R (2016) Forensic body fluid identification: state of the art. Res Rep Forensic Med Sci. https://doi.org/10.2147/rrfms.s57994 [DOI: 10.2147/rrfms.s57994]
  15. Choi A, Shin KJ, Yang WI, Lee HY (2014) Body fluid identification by integrated analysis of DNA methylation and body fluid-specific microbial DNA. Int J Legal Med 128:33–41. https://doi.org/10.1007/s00414-013-0918-4 [DOI: 10.1007/s00414-013-0918-4]
  16. Kader F, Ghai M (2015) DNA methylation and application in forensic sciences. Forensic Sci Int 249:255–265. https://doi.org/10.1016/J.FORSCIINT.2015.01.037 [DOI: 10.1016/J.FORSCIINT.2015.01.037]
  17. Juusola J, Ballantyne J (2003) Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification. Forensic Sci Int 135:85–96. https://doi.org/10.1016/S0379-0738(03)00197-X [DOI: 10.1016/S0379-0738(03)00197-X]
  18. Li Z, Chen D, Wang Q et al (2021) mRNA and microRNA stability validation of blood samples under different environmental conditions. Forensic Sci Int Genet. https://doi.org/10.1016/j.fsigen.2021.102567 [DOI: 10.1016/j.fsigen.2021.102567]
  19. Leake SL (2013) Is human DNA enough? Potential for bacterial DNA. Front Genet. https://doi.org/10.3389/FGENE.2013.00282 [DOI: 10.3389/FGENE.2013.00282]
  20. Ohta J, Sakurada K (2019) Oral gram-positive bacterial DNA-based identification of saliva from highly degraded samples. Forensic Sci Int Genet 42:103–112. https://doi.org/10.1016/j.fsigen.2019.06.016 [DOI: 10.1016/j.fsigen.2019.06.016]
  21. Huttenhower C, Gevers D, Knight R et al (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214. https://doi.org/10.1038/nature11234 [DOI: 10.1038/nature11234]
  22. D’angiolella G, Tozzo P, Gino S, Caenazzo L (2020) Trick or treating in forensics—the challenge of the Saliva microbiome: a narrative review. Microorganisms 8:1–15. https://doi.org/10.3390/microorganisms8101501 [DOI: 10.3390/microorganisms8101501]
  23. Richardson M, Gottel N, Gilbert JA, Lax S (2019) Microbial similarity between students in a common dormitory environment reveals the forensic potential of individual microbial signatures. MBio. https://doi.org/10.1128/MBIO.01054-19/SUPPL_FILE/MBIO.01054-19-ST002.DOCX [DOI: 10.1128/MBIO.01054-19/SUPPL_FILE/MBIO.01054-19-ST002.DOCX]
  24. Kim S, Seo H, Rahim MA, Lee S, Kim YS, Song HY (2021) Changes in the microbiome of vaginal fluid after menopause in Korean women. J Microbiol Biotechnol 31(11):1490–1500. https://doi.org/10.4014/jmb.2106.06022 [DOI: 10.4014/jmb.2106.06022]
  25. Stahringer SS, Clemente JC, Corley RP et al (2012) Nurture trumps nature in a longitudinal survey of salivary bacterial communities in twins from early adolescence to early adulthood. Genome Res 22:2146. https://doi.org/10.1101/GR.140608.112 [DOI: 10.1101/GR.140608.112]
  26. Singh H, Clarke T, Brinkac L et al (2021) Forensic microbiome database: a tool for forensic geolocation meta-analysis using publicly available 16S rRNA microbiome sequencing. Front Microbiol. https://doi.org/10.3389/fmicb.2021.644861 [DOI: 10.3389/fmicb.2021.644861]
  27. FMD (2022) Forensic microbiome database. http://fmd.jcvi.org/analysis.php . Accessed 22 Aug 2022
  28. Oliveira SG, Nishiyama RR, Trigo CAC et al (2021) Core of the saliva microbiome: an analysis of the MG-RAST data. BMC Oral Health 21:1–10. https://doi.org/10.1186/S12903-021-01719-5/FIGURES/5 [DOI: 10.1186/S12903-021-01719-5/FIGURES/5]
  29. Ruan X, Luo J, Zhang P, Howell K (2022) The salivary microbiome shows a high prevalence of core bacterial members yet variability across human populations. npj Biofilms Microbiomes 8:1–14. https://doi.org/10.1038/s41522-022-00343-7 [DOI: 10.1038/s41522-022-00343-7]
  30. Shimauchi H, Mayanagi G, Nakaya S et al (2008) Improvement of periodontal condition by probiotics with Lactobacillus salivarius WB21: a randomized, double-blind, placebo-controlled study. J Clin Periodontol 35:897–905. https://doi.org/10.1111/J.1600-051X.2008.01306.X [DOI: 10.1111/J.1600-051X.2008.01306.X]
  31. Hasan NA, Young BA, Minard-Smith AT et al (2014) Microbial community profiling of human saliva using shotgun metagenomic sequencing. PLoS ONE 9:e97699. https://doi.org/10.1371/journal.pone.0097699 [DOI: 10.1371/journal.pone.0097699]
  32. Raju SC, Lagström S, Ellonen P et al (2019) Gender-specific associations between saliva microbiota and body size. Front Microbiol 10:767. https://doi.org/10.3389/FMICB.2019.00767 [DOI: 10.3389/FMICB.2019.00767]
  33. Takeshita T, Kageyama S, Furuta M et al (2016) Bacterial diversity in saliva and oral health-related conditions: the Hisayama study. Sci Rep. https://doi.org/10.1038/SREP22164 [DOI: 10.1038/SREP22164]
  34. Liang X, Han X, Liu C et al (2022) Integrating the salivary microbiome in the forensic toolkit by 16S rRNA gene: potential application in body fluid identification and biogeographic inference. Int J Legal Med 136:975–985. https://doi.org/10.1007/S00414-022-02831 [DOI: 10.1007/S00414-022-02831]
  35. Karadayı S, Arasoglu T, Akmayan İ, Karadayı B (2021) Assessment of the exclusion potential of suspects by using microbial signature in sexual assault cases: a scenario-based experimental study. Forensic Sci Int 325:110886. https://doi.org/10.1016/J.FORSCIINT.2021.110886 [DOI: 10.1016/J.FORSCIINT.2021.110886]
  36. Greenwood D, Afacan B, Emingil G et al (2020) Salivary microbiome shifts in response to periodontal treatment outcome. Proteomics Clin Appl 14:2000011. https://doi.org/10.1002/PRCA.202000011 [DOI: 10.1002/PRCA.202000011]
  37. World Health Organization (2023) Oral health. https://www.who.int/news-room/fact-sheets/detail/oral-health . Accessed 23 May 2023
  38. Belstrøm D (2020) The salivary microbiota in health and disease. J Oral Microbiol. https://doi.org/10.1080/20002297.2020.1723975 [DOI: 10.1080/20002297.2020.1723975]
  39. Zhang Y, Liu Y, Ma Q et al (2014) Identification of Lactobacillus from the saliva of adult patients with caries using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. PLoS ONE 9:3–9. https://doi.org/10.1371/journal.pone.0106185 [DOI: 10.1371/journal.pone.0106185]
  40. Zhou X, Liu X, Li J et al (2015) Real-time PCR quantification of six periodontal pathogens in saliva samples from healthy young adults. Clin Oral Investig 19:937–946. https://doi.org/10.1007/s00784-014-1316-0 [DOI: 10.1007/s00784-014-1316-0]
  41. Ortiz AP, Acosta-Pagán KT, Oramas-Sepúlveda C et al (2022) Oral microbiota and periodontitis severity among Hispanic adults. Front Cell Infect Microbiol 12:1623. https://doi.org/10.3389/FCIMB.2022.965159 [DOI: 10.3389/FCIMB.2022.965159]
  42. Xi Y, Xu P (2021) Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol 14:101174. https://doi.org/10.1016/J.TRANON.2021.101174 [DOI: 10.1016/J.TRANON.2021.101174]
  43. Guven DC, Dizdar O, Alp A et al (2019) Analysis of Fusobacterium nucleatum and Streptococcus gallolyticus in saliva of colorectal cancer patients. Biomark Med 13:725–735 [DOI: 10.2217/bmm-2019-0020]
  44. Idrissi Janati A, Karp I, Von Renteln D et al (2022) Investigation of Fusobacterium Nucleatum in saliva and colorectal mucosa: a pilot study. Sci Rep 12:1–10. https://doi.org/10.1038/s41598-022-09587-x [DOI: 10.1038/s41598-022-09587-x]
  45. Zozaya-Hinchliffe M, Lillis R, Martin DH, Ferris MJ (2010) Quantitative PCR assessments of bacterial species in women with and without bacterial vaginosis. J Clin Microbiol 48:1812–1819. https://doi.org/10.1128/JCM.00851-09 [DOI: 10.1128/JCM.00851-09]
  46. Liu F, Zhou Y, Zhu L et al (2021) Comparative metagenomic analysis of the vaginal microbiome in healthy women. Synth Syst Biotechnol 6:77–84. https://doi.org/10.1016/J.SYNBIO.2021.04.002 [DOI: 10.1016/J.SYNBIO.2021.04.002]
  47. Mancabelli L, Tarracchini C, Milani C et al (2021) Vaginotypes of the human vaginal microbiome. Environ Microbiol 23:1780–1792. https://doi.org/10.1111/1462-2920.15441 [DOI: 10.1111/1462-2920.15441]
  48. Jespers V, van de Wijgert J, Cools P et al (2015) The significance of Lactobacillus crispatus and L. vaginalis for vaginal health and the negative effect of recent sex: a cross-sectional descriptive study across groups of African women. BMC Infect Dis. https://doi.org/10.1186/S12879-015-0825-Z [DOI: 10.1186/S12879-015-0825-Z]
  49. Fleming RI, Harbison S (2010) The development of a mRNA multiplex RT-PCR assay for the definitive identification of body fluids. Forensic Sci Int Genet 4:244–256. https://doi.org/10.1016/j.fsigen.2009.10.006 [DOI: 10.1016/j.fsigen.2009.10.006]
  50. Lennard K, Dabee S, Barnabas SL et al (2018) Microbial composition predicts genital tract inflammation and persistent bacterial vaginosis in South African adolescent females. Infect Immun 86:410–427. https://doi.org/10.1128/IAI.00410-17/SUPPL_FILE/ZII001182251S1.PDF [DOI: 10.1128/IAI.00410-17/SUPPL_FILE/ZII001182251S1.PDF]
  51. Huang H, Yao T, Wu W et al (2019) Specific microbes of saliva and vaginal fluid of Guangdong Han females based on 16S rDNA high-throughput sequencing. Int J Legal Med 133:699–710. https://doi.org/10.1007/S00414-018-1986-2 [DOI: 10.1007/S00414-018-1986-2]
  52. Song SD, Acharya KD, Zhu JE et al (2020) Daily vaginal microbiota fluctuations associated with natural hormonal cycle, contraceptives, diet, and exercise. mSphere. https://doi.org/10.1128/MSPHERE.00593-20 [DOI: 10.1128/MSPHERE.00593-20]
  53. Fettweis JM, Paul Brooks J, Serrano MG et al (2014) Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology (N Y) 160:2272. https://doi.org/10.1099/MIC.0.081034-0 [DOI: 10.1099/MIC.0.081034-0]
  54. Li D, Chi XZ, Zhang L et al (2020) Vaginal microbiome analysis of healthy women during different periods of gestation. Biosci Rep. https://doi.org/10.1042/BSR20201766
  55. Sultana A, Baig K, Rahman K et al (2022) Contemporary overview of bacterial vaginosis in conventional and complementary and alternative medicine. Comput Intell Healthc Appl. https://doi.org/10.1016/B978-0-323-99031-8.00024-7 [DOI: 10.1016/B978-0-323-99031-8.00024-7]
  56. Ceccarani C, Foschi C, Parolin C et al (2019) Diversity of vaginal microbiome and metabolome during genital infections. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-50410-x [DOI: 10.1038/s41598-019-50410-x]
  57. Muzny CA, Taylor CM, Swords WE et al (2019) An updated conceptual model on the pathogenesis of bacterial vaginosis. J Infect Dis 220:1399–1405. https://doi.org/10.1093/INFDIS/JIZ342 [DOI: 10.1093/INFDIS/JIZ342]
  58. Srinivasan S, Hoffman NG, Morgan MT et al (2012) Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS ONE. https://doi.org/10.1371/journal.pone.0037818 [DOI: 10.1371/journal.pone.0037818]
  59. Brons JK, Vink SN, de Vos MGJ et al (2020) Fast identification of Escherichia coli in urinary tract infections using a virulence gene based PCR approach in a novel thermal cycler. J Microbiol Methods. https://doi.org/10.1016/j.mimet.2019.105799 [DOI: 10.1016/j.mimet.2019.105799]
  60. Hinata N, Shirakawa T, Okada H et al (2004) Quantitative detection of Escherichia coli from urine of patients with bacteriuria by real-time PCR. Mol Diagn 8:179–184. https://doi.org/10.2165/00066982-200408030-00006 [DOI: 10.2165/00066982-200408030-00006]
  61. Ferreiro JLL, Otero JÁ, González LG et al (2017) Pseudomonas aeruginosa urinary tract infections in hospitalized patients: mortality and prognostic factors. PLoS ONE 12:1–13. https://doi.org/10.1371/journal.pone.0178178 [DOI: 10.1371/journal.pone.0178178]
  62. Dubourg G, Morand A, Mekhalif F et al (2020) Deciphering the urinary microbiota repertoire by culturomics reveals mostly anaerobic bacteria from the gut. Front Microbiol 11:1–8. https://doi.org/10.3389/fmicb.2020.513305 [DOI: 10.3389/fmicb.2020.513305]
  63. Türk S, Korrovits P, Punab M, Mändar R (2007) Coryneform bacteria in semen of chronic prostatitis patients. Int J Androl 30:123–128. https://doi.org/10.1111/j.1365-2605.2006.00722.x [DOI: 10.1111/j.1365-2605.2006.00722.x]
  64. Mändar R, Punab M, Korrovits P et al (2017) Seminal microbiome in men with and without prostatitis. Int J Urol 24:211–216. https://doi.org/10.1111/iju.13286 [DOI: 10.1111/iju.13286]
  65. Türk S, Mazzoli S, Štšepetova J et al (2014) Coryneform bacteria in human semen: inter-assay variability in species composition detection and biofilm production ability. Microb Ecol Health Dis 25:1–6. https://doi.org/10.3402/mehd.v25.22701 [DOI: 10.3402/mehd.v25.22701]
  66. Madhivanan P, Raphael E, Rumphs A et al (2014) Characterization of culturable vaginal Lactobacillus species among women with and without bacterial vaginosis from the United States and India: a cross-sectional study. J Med Microbiol 63:931–935. https://doi.org/10.1099/JMM.0.073080-0 [DOI: 10.1099/JMM.0.073080-0]
  67. Srinivasan S, Liu C, Mitchell CM et al (2010) Temporal variability of human vaginal bacteria and relationship with bacterial vaginosis. PLoS ONE. https://doi.org/10.1371/journal.pone.0010197 [DOI: 10.1371/journal.pone.0010197]
  68. Critchley HOD, Babayev E, Bulun SE et al (2020) Menstruation: science and society. Am J Obstet Gynecol 223:624–664. https://doi.org/10.1016/j.ajog.2020.06.004 [DOI: 10.1016/j.ajog.2020.06.004]
  69. Hummelen R, Fernandes AD, Macklaim JM et al (2010) Deep sequencing of the vaginal microbiota of women with HIV. PLoS ONE 5:e12078. https://doi.org/10.1371/JOURNAL.PONE.0012078 [DOI: 10.1371/JOURNAL.PONE.0012078]
  70. Krog MC, Hugerth LW, Fransson E et al (2022) The healthy female microbiome across body sites: effect of hormonal contraceptives and the menstrual cycle. Hum Reprod 37:1525. https://doi.org/10.1093/HUMREP/DEAC094 [DOI: 10.1093/HUMREP/DEAC094]
  71. Baud D, Pattaroni C, Vulliemoz N et al (2019) Sperm microbiota and its impact on semen parameters. Front Microbiol 10:1–9. https://doi.org/10.3389/fmicb.2019.00234 [DOI: 10.3389/fmicb.2019.00234]
  72. Tuominen H, Rautava J, Kero K et al (2021) HPV infection and bacterial microbiota in the semen from healthy men. BMC Infect Dis 21:1–9. https://doi.org/10.1186/s12879-021-06029-3 [DOI: 10.1186/s12879-021-06029-3]
  73. Liu CM, Osborne BJW, Hungate BA et al (2014) The semen microbiome and its relationship with local immunology and viral load in HIV infection. PLoS Pathog. https://doi.org/10.1371/JOURNAL.PPAT.1004262 [DOI: 10.1371/JOURNAL.PPAT.1004262]
  74. Moustafa A, Li W, Singh H et al (2018) Microbial metagenome of urinary tract infection. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-22660-8 [DOI: 10.1038/s41598-018-22660-8]
  75. Wehedy E, Murugesan S, George CR et al (2022) Characterization of the urinary metagenome and virome in healthy children. Biomedicines 10:2412. https://doi.org/10.3390/BIOMEDICINES10102412/S1 [DOI: 10.3390/BIOMEDICINES10102412/S1]
  76. Tozzo P, D’angiolella G, Brun P et al (2020) Skin microbiome analysis for forensic human identification: what do we know so far? Microorganisms 8:1–19. https://doi.org/10.3390/microorganisms8060873 [DOI: 10.3390/microorganisms8060873]
  77. Robinson JM, Pasternak Z, Mason CE, Elhaik E (2021) Forensic applications of microbiomics: a review. Front Microbiol 11:1–13. https://doi.org/10.3389/fmicb.2020.608101 [DOI: 10.3389/fmicb.2020.608101]
  78. Quaak FCA, van de Wal Y, Maaskant-van Wijk PA, Kuiper I (2018) Combining human STR and microbial population profiling: two case reports. Forensic Sci Int Genet 37:196–199. https://doi.org/10.1016/j.fsigen.2018.08.018 [DOI: 10.1016/j.fsigen.2018.08.018]
  79. Cho HW, Bin EY (2021) Forensic analysis of human microbiome in skin and body fluids based on geographic location. Front Cell Infect Microbiol 11:743. https://doi.org/10.3389/FCIMB.2021.695191/BIBTEX [DOI: 10.3389/FCIMB.2021.695191/BIBTEX]
  80. Peterson D, Bonham KS, Rowland S et al (2021) Comparative analysis of 16S rRNA gene and metagenome sequencing in pediatric gut microbiomes. Front Microbiol 12:670336. https://doi.org/10.3389/FMICB.2021.670336/BIBTEX [DOI: 10.3389/FMICB.2021.670336/BIBTEX]
  81. Durazzi F, Sala C, Castellani G et al (2021) Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Sci Rep 11:1–10. https://doi.org/10.1038/s41598-021-82726-y [DOI: 10.1038/s41598-021-82726-y]
  82. Shah N, Tang H, Doak TG, Ye Y (2011) Comparing bacterial communities inferred from 16S rRNA gene sequencing and shotgun metagenomics. Pac Symp Biocomput. https://doi.org/10.1142/9789814335058_0018 [DOI: 10.1142/9789814335058_0018]
  83. Poretsky R, Rodriguez-R LM, Luo C et al (2014) Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0093827 [DOI: 10.1371/JOURNAL.PONE.0093827]
  84. Yarza P, Yilmaz P, Pruesse E et al (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645. https://doi.org/10.1038/NRMICRO3330 [DOI: 10.1038/NRMICRO3330]
  85. Hillmann B, Al-Ghalith GA, Shields-Cutler RR et al (2018) Evaluating the information content of shallow shotgun metagenomics. mSystems. https://doi.org/10.1128/MSYSTEMS.00069-18 [DOI: 10.1128/MSYSTEMS.00069-18]
  86. Costanzo H, Gooch J, Frascione N (2023) Nanomaterials for optical biosensors in forensic analysis. Talanta 253:123945. https://doi.org/10.1016/J.TALANTA.2022.123945 [DOI: 10.1016/J.TALANTA.2022.123945]
  87. Li X, Ding Y, Ling J et al (2019) Bacteria-targeting BSA-stabilized SiC nanoparticles as a fluorescent nanoprobe for forensic identification of saliva. Microchim Acta 186:1–10. https://doi.org/10.1007/S00604-019-3890-Y/FIGURES/5 [DOI: 10.1007/S00604-019-3890-Y/FIGURES/5]
  88. Albani PP, Fleming R (2018) Novel messenger RNAs for body fluid identification. Sci Justice 58:145–152. https://doi.org/10.1016/J.SCIJUS.2017.09.002 [DOI: 10.1016/J.SCIJUS.2017.09.002]
  89. Winand R, Bogaerts B, Hoffman S et al (2020) Targeting the 16s rRNA gene for bacterial identification in complex mixed samples: comparative evaluation of second (illumina) and third (oxford nanopore technologies) generation sequencing technologies. Int J Mol Sci 21:1–22. https://doi.org/10.3390/ijms21010298 [DOI: 10.3390/ijms21010298]
  90. Knights D, Kuczynski J, Charlson ES et al (2011) Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8:761–765. https://doi.org/10.1038/NMETH.1650 [DOI: 10.1038/NMETH.1650]

MeSH Term

Humans
Female
Vaginosis, Bacterial
Vagina
Body Fluids
Gardnerella vaginalis
Saliva
Bacteria

Word Cloud

Created with Highcharts 10.0.0bodybacterialfluidsspeciesbacteriafluidreportedforensicidentificationmicrobialMicrobialpresentstudiescorespecificgeographicalassociateddiseasedhealthyPrevotellaLactobacillusvaginalwomencommunitiescanassistdistinguishingtypesMetagenomicgeneragreatlyinfluencedlocationethnicityBacteriaalsodueinfectionhenceworthwhiletakingconsiderationdiseasesreviewreportscharacteristicacrosslocationsdescribedaimcollatingsetservespecies-specificmarkerswidelysaliva-specificStreptococcussalivariusmelaninogenicaNeisseriaflavescensFusobacteriumnucleatumincreasedstatecrispatusinersfrequentlydominantmicrobiomeAtopobiumvaginaebiviaGardnerellavaginalisprevalentvaginosisSemenurine-specificlevelmenstrualbloodindistinguishableTargetingonerecommendedaccurateAlthoughmetagenomicsequencingprovidesinformationbroadprofileuseddesignbiosensorsrapidValidationtypingmethodsapplicationidentifyingmixedsampleallowregularuseprofilingworkflowReviewSpeciesForensicBodyFluidIdentificationHealthyDiseasedHumans

Similar Articles

Cited By