Integrative Omics Reveals Rapidly Evolving Regulatory Sequences Driving Primate Brain Evolution.

Xiao-Lin Zhuang, Jin-Jin Zhang, Yong Shao, Yaxin Ye, Chun-Yan Chen, Long Zhou, Zheng-Bo Wang, Xin Luo, Bing Su, Yong-Gang Yao, David N Cooper, Ben-Xia Hu, Lu Wang, Xiao-Guang Qi, Jiangwei Lin, Guo-Jie Zhang, Wen Wang, Nengyin Sheng, Dong-Dong Wu
Author Information
  1. Xiao-Lin Zhuang: State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
  2. Jin-Jin Zhang: State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
  3. Yong Shao: State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. ORCID
  4. Yaxin Ye: State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
  5. Chun-Yan Chen: School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
  6. Long Zhou: Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
  7. Zheng-Bo Wang: Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
  8. Xin Luo: State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
  9. Bing Su: State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. ORCID
  10. Yong-Gang Yao: Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, China. ORCID
  11. David N Cooper: Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, Wales, UK.
  12. Ben-Xia Hu: State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
  13. Lu Wang: College of Life Sciences, Northwest University, Xi'an, Shaanxi, China.
  14. Xiao-Guang Qi: College of Life Sciences, Northwest University, Xi'an, Shaanxi, China.
  15. Jiangwei Lin: State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
  16. Guo-Jie Zhang: Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou, Guangdong, China.
  17. Wen Wang: State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
  18. Nengyin Sheng: State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
  19. Dong-Dong Wu: State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. ORCID

Abstract

Although the continual expansion of the brain during primate evolution accounts for our enhanced cognitive capabilities, the drivers of brain evolution have scarcely been explored in these ancestral nodes. Here, we performed large-scale comparative genomic, transcriptomic, and epigenomic analyses to investigate the evolutionary alterations acquired by brain genes and provide comprehensive listings of innovatory genetic elements along the evolutionary path from ancestral primates to human. The regulatory sequences associated with brain-expressed genes experienced rapid change, particularly in the ancestor of the Simiiformes. Extensive comparisons of single-cell and bulk transcriptomic data between primate and nonprimate brains revealed that these regulatory sequences may drive the high expression of certain genes in primate brains. Employing in utero electroporation into mouse embryonic cortex, we show that the primate-specific brain-biased gene BMP7 was recruited, probably in the ancestor of the Simiiformes, to regulate neuronal proliferation in the primate ventricular zone. Our study provides a comprehensive listing of genes and regulatory changes along the brain evolution lineage of ancestral primates leading to human. These data should be invaluable for future functional studies that will deepen our understanding not only of the genetic basis of human brain evolution but also of inherited disease.

Keywords

References

  1. Sci Adv. 2023 Jun 2;9(22):eadc9507 [PMID: 37262186]
  2. Curr Biol. 2015 Mar 16;25(6):772-779 [PMID: 25702574]
  3. Science. 2018 Dec 14;362(6420): [PMID: 30545855]
  4. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  5. Science. 2020 Sep 11;369(6509):1318-1330 [PMID: 32913098]
  6. Nucleic Acids Res. 2018 Jan 4;46(D1):D794-D801 [PMID: 29126249]
  7. Genomics. 2011 Aug;98(2):152-3 [PMID: 21651976]
  8. Genome Res. 2015 Sep;25(9):1245-55 [PMID: 26104583]
  9. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  10. Genome Biol. 2007;8(6):R118 [PMID: 17578567]
  11. Science. 2006 Nov 3;314(5800):786 [PMID: 17082449]
  12. Proc Natl Acad Sci U S A. 2021 Jan 12;118(2): [PMID: 33372131]
  13. Science. 2015 Mar 27;347(6229):1465-70 [PMID: 25721503]
  14. Sci Adv. 2020 Nov 6;6(45): [PMID: 33158872]
  15. Cell Res. 2018 Jul;28(7):730-745 [PMID: 29867213]
  16. Nature. 2021 Apr;592(7854):421-427 [PMID: 33731928]
  17. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  18. Genome Biol. 2019 Nov 28;20(1):258 [PMID: 31779658]
  19. Nature. 2016 Jul 13;535(7612):367-75 [PMID: 27409810]
  20. Science. 1975 Apr 11;188(4184):107-16 [PMID: 1090005]
  21. Neuron. 2012 Mar 22;73(6):1083-99 [PMID: 22445337]
  22. Nat Neurosci. 2017 Jun;20(6):886-895 [PMID: 28414332]
  23. Nat Neurosci. 2016 Mar;19(3):494-503 [PMID: 26807951]
  24. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  25. Science. 2023 Jun 2;380(6648):913-924 [PMID: 37262173]
  26. Neuron. 2015 Feb 18;85(4):683-94 [PMID: 25695268]
  27. Science. 2018 Dec 14;362(6420): [PMID: 30545853]
  28. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  29. Science. 2018 Dec 14;362(6420): [PMID: 30545857]
  30. Nat Commun. 2019 Jun 3;10(1):2396 [PMID: 31160561]
  31. Science. 2017 Dec 8;358(6368):1318-1323 [PMID: 29217575]
  32. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  33. Mol Biol Evol. 2016 Oct;33(10):2565-75 [PMID: 27401230]
  34. PLoS One. 2012;7(3):e34088 [PMID: 22461901]
  35. Nat Commun. 2021 Apr 1;12(1):2021 [PMID: 33795684]
  36. Nucleic Acids Res. 2016 Jul 8;44(W1):W83-9 [PMID: 27098042]
  37. Nature. 2006 Sep 14;443(7108):167-72 [PMID: 16915236]
  38. PLoS Genet. 2006 Oct 13;2(10):e168 [PMID: 17040131]
  39. Science. 2015 Mar 6;347(6226):1155-9 [PMID: 25745175]
  40. Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11836-41 [PMID: 22753484]

MeSH Term

Mice
Humans
Animals
Primates
Brain
Evolution, Molecular

Word Cloud

Similar Articles

Cited By