A novel, low-cost microfluidic device with an integrated filter for rapid, ultrasensitive, and high-throughput bioburden detection.

Md Sadique Hasan, Chad Sundberg, Michael Tolosa, Abhay Andar, Xudong Ge, Yordan Kostov, Govind Rao
Author Information
  1. Md Sadique Hasan: Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
  2. Chad Sundberg: Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
  3. Michael Tolosa: Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
  4. Abhay Andar: Champions Oncology Inc, 855 N Wolfe St, Baltimore, MD, 21205, USA.
  5. Xudong Ge: Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
  6. Yordan Kostov: Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
  7. Govind Rao: Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, 21250, USA. grao@umbc.edu.

Abstract

Rapid and accurate bioburden detection has become increasingly necessary for food, health, pharmaceutical and environmental applications. To detect bioburden accurately, and in a highly sensitive manner, we have fabricated a novel microfluidic device with an integrated filter to trap the cells. Bioburden is detected on the filter paper in situ using the redox reaction of fluorescent label resorufin and a portable multichannel fluorometer is used for fluorescence measurement. The microfluidic device was fabricated in a facile, low-cost, and rapid way with microwave-induced thermally assisted bonding. To characterize the bonding quality of the microfluidic cassettes, different tests were performed, and the filter paper material and size were optimized. Primary Bacillus subtilis culture bacterial samples were filtered through the device to validate and investigate the performance parameters. Our results show that a limit of detection (LOD) of 0.037 CFU/mL can be achieved through this microfluidic device whereas the LOD in a normal microfluidic cassette in the fluorometer and the golden standard spectrophotometer are 0.378 and 0.128 CFU/mL respectively. The results depict that three to ten times LOD improvement is possible through this microfluidic cassette and more sensitive detection is possible depending on the volume filtered within a rapid 3 min. This novel microfluidic device along with the fluorometer can be used as a rapid portable tool for highly sensitive, accurate and high-throughput bacterial detection for different applications.

References

  1. Talanta. 2014 Mar;120:135-40 [PMID: 24468352]
  2. Int J Mol Sci. 2015 Apr 02;16(4):7493-519 [PMID: 25849657]
  3. Ann Burns Fire Disasters. 2016 Dec 31;29(4):264-267 [PMID: 28289359]
  4. Anal Chem. 2022 Jun 21;94(24):8683-8692 [PMID: 35666619]
  5. N Engl J Med. 2012 Nov 29;367(22):2119-25 [PMID: 23083311]
  6. Lab Chip. 2012 Apr 21;12(8):1412-6 [PMID: 22406768]
  7. Appl Environ Microbiol. 1995 Jun;61(6):2180-5 [PMID: 16535043]
  8. J Chromatogr A. 2010 Jul 9;1217(28):4743-8 [PMID: 20730040]
  9. Adv Pharm Bull. 2016 Sep;6(3):301-308 [PMID: 27766214]
  10. Electrophoresis. 2011 Nov;32(22):3221-32 [PMID: 22038569]
  11. Zentralbl Veterinarmed B. 1991 Jul;38(5):358-72 [PMID: 1927150]
  12. Biosens Bioelectron. 1996;11(5):455-77 [PMID: 8729237]
  13. Science. 2014 Oct 24;346(6208):1251821 [PMID: 25342809]
  14. Tuberculosis (Edinb). 2012 Nov;92(6):489-96 [PMID: 22954584]
  15. Biosens Bioelectron. 2003 May;18(5-6):511-9 [PMID: 12706557]
  16. Appl Environ Microbiol. 1989 May;55(5):1249-57 [PMID: 16347914]
  17. Sci Rep. 2022 Sep 27;12(1):16075 [PMID: 36167734]
  18. Biosens Bioelectron. 2011 Jul 15;26(11):4342-8 [PMID: 21592765]
  19. IET Syst Biol. 2010 Nov;4(6):416-27 [PMID: 21073240]
  20. PDA J Pharm Sci Technol. 2014 Mar-Apr;68(2):164-71 [PMID: 24668603]
  21. Nat Chem. 2013 Nov;5(11):905-15 [PMID: 24153367]
  22. Angew Chem Int Ed Engl. 2007;46(8):1318-20 [PMID: 17211899]
  23. Appl Microbiol Biotechnol. 2012 Feb;93(4):1411-22 [PMID: 22262227]
  24. Carbohydr Polym. 2017 May 1;163:146-152 [PMID: 28267491]
  25. Anal Chem. 2012 Mar 20;84(6):2900-7 [PMID: 22320200]
  26. Biomicrofluidics. 2011 Mar 30;5(1):13410 [PMID: 21522500]
  27. J Agric Food Chem. 2012 Jun 27;60(25):6349-58 [PMID: 22630610]
  28. Nature. 2014 Mar 13;507(7491):181-9 [PMID: 24622198]
  29. Anal Chem. 2018 Sep 4;90(17):10171-10178 [PMID: 30081627]
  30. Nanomaterials (Basel). 2021 Feb 27;11(3): [PMID: 33673629]

Grants

  1. BAA 75F40119C10132/FDA HHS

MeSH Term

Microfluidic Analytical Techniques
Microfluidics
Limit of Detection
Lab-On-A-Chip Devices

Word Cloud

Created with Highcharts 10.0.0microfluidicdevicedetectionfilterrapidbioburdensensitivenovelfluorometerLOD0accurateapplicationshighlyfabricatedintegratedpaperportableusedlow-costbondingdifferentbacterialfilteredresultscancassettepossiblehigh-throughputRapidbecomeincreasinglynecessaryfoodhealthpharmaceuticalenvironmentaldetectaccuratelymannertrapcellsBioburdendetectedsituusingredoxreactionfluorescentlabelresorufinmultichannelfluorescencemeasurementfacilewaymicrowave-inducedthermallyassistedcharacterizequalitycassettestestsperformedmaterialsizeoptimizedPrimaryBacillussubtilisculturesamplesvalidateinvestigateperformanceparametersshowlimit037 CFU/mLachievedwhereasnormalgoldenstandardspectrophotometer378128 CFU/mLrespectivelydepictthreetentimesimprovementdependingvolumewithin3 minalongtoolultrasensitive

Similar Articles

Cited By