An immuno-epidemiological model for transient immune protection: A case study for viral respiratory infections.

A Hoyer-Leitzel, S M Iams, A J Haslam-Hyde, M L Zeeman, N H Fefferman
Author Information
  1. A Hoyer-Leitzel: Department of Mathematics and Statistics, Mount Holyoke College, 50 College St, South Hadley, MA, 01075, USA.
  2. S M Iams: John A. Paulson School of Engineering and Applied Sciences, Harvard University, USA.
  3. A J Haslam-Hyde: Department of Mathematics and Statistics, Boston University, USA.
  4. M L Zeeman: Department of Mathematics, Bowdoin College, USA.
  5. N H Fefferman: Dept of Mathematics & Dept of Ecology and Evolutionary Biology & NIMBioS, University of Tennessee, Knoxville, USA.

Abstract

The dynamics of infectious disease in a population critically involves both within-host pathogen replication and between host pathogen transmission. While modeling efforts have recently explored how within-host dynamics contribute to shaping population transmission, fewer have explored how ongoing circulation of an epidemic infectious disease can impact within-host immunological dynamics. We present a simple, influenza-inspired model that explores the potential for re-exposure during a single, ongoing outbreak to shape individual immune response and epidemiological potential in non-trivial ways. We show how even a simplified system can exhibit complex ongoing dynamics and sensitive thresholds in behavior. We also find epidemiological stochasticity likely plays a critical role in reinfection or in the maintenance of individual immunological protection over time.

Keywords

References

  1. PLoS Comput Biol. 2018 Aug 16;14(8):e1006377 [PMID: 30114215]
  2. Nat Rev Immunol. 2017 Jan;17(1):21-29 [PMID: 27916977]
  3. Bull Math Biol. 2021 Oct 23;83(12):118 [PMID: 34687362]
  4. Nat Commun. 2015 Jan 08;6:5975 [PMID: 25569306]
  5. Philos Trans R Soc Lond B Biol Sci. 2012 Oct 19;367(1604):2807-13 [PMID: 22966136]
  6. PLoS Comput Biol. 2015 Aug 18;11(8):e1004334 [PMID: 26284917]
  7. Nat Resour Model. 2012 Feb 1;25(1):5-51 [PMID: 22639490]
  8. Risk Anal. 2014 Sep;34(9):1606-17 [PMID: 24593308]
  9. J Appl Microbiol. 2005;98(2):380-96 [PMID: 15659193]
  10. BMC Infect Dis. 2013 Oct 21;13:488 [PMID: 24138807]
  11. Chaos. 2022 Feb;32(2):021102 [PMID: 35232044]
  12. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Apr;89(4):042108 [PMID: 24827194]
  13. PLoS Pathog. 2020 Dec 17;16(12):e1009071 [PMID: 33332470]
  14. Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18095-6 [PMID: 25502594]
  15. Proc Biol Sci. 2007 May 7;274(1614):1133-41 [PMID: 17327206]
  16. J Virol. 2007 Jun;81(11):5429-36 [PMID: 17182688]
  17. Math Biosci Eng. 2020 Sep 30;17(6):6720-6736 [PMID: 33378874]
  18. Science. 2009 Dec 4;326(5958):1362-7 [PMID: 19965751]
  19. Nature. 2003 Mar 27;422(6930):428-33 [PMID: 12660783]
  20. J R Soc Interface. 2012 Feb 7;9(67):304-12 [PMID: 21715400]
  21. Int J Food Microbiol. 2000 Jul 15;58(3):159-72 [PMID: 10939266]
  22. BMC Infect Dis. 2018 Oct 29;18(1):540 [PMID: 30373527]
  23. Behav Ecol Sociobiol. 2021;75(8):122 [PMID: 34421183]
  24. Math Biosci. 2007 Apr;206(2):309-19 [PMID: 16214182]
  25. Nature. 2005 Nov 17;438(7066):355-9 [PMID: 16292310]
  26. J Med Virol. 2008 Aug;80(8):1468-76 [PMID: 18551613]
  27. PLoS One. 2013 Aug 26;8(8):e72086 [PMID: 23991047]
  28. Dig Liver Dis. 2011 Jan;43 Suppl 1:S8-14 [PMID: 21195374]
  29. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11541-11550 [PMID: 32385153]
  30. Mol Immunol. 2004 Feb;40(12):845-59 [PMID: 14698223]
  31. Trends Microbiol. 2014 Nov;22(11):648-55 [PMID: 25065707]
  32. J Appl Microbiol. 2001 Aug;91(2):191-205 [PMID: 11473583]
  33. J Allergy Clin Immunol. 2010 Feb;125(2 Suppl 2):S33-40 [PMID: 20061006]
  34. PLoS Comput Biol. 2022 Jun 27;18(6):e1010206 [PMID: 35759506]
  35. Bull Math Biol. 2021 Sep 30;83(11):113 [PMID: 34591211]
  36. Science. 2022 Jun 10;376(6598):1161-1162 [PMID: 35679395]
  37. PLoS Biol. 2022 Sep 12;20(9):e3001770 [PMID: 36094962]
  38. Comput Math Methods Med. 2022 Apr 5;2022:5031806 [PMID: 35422874]
  39. Vaccine. 2004 Sep 28;22(29-30):4110-6 [PMID: 15364464]
  40. Bull Math Biol. 2016 Mar;78(3):413-35 [PMID: 26951249]
  41. PLoS Pathog. 2014 Oct 23;10(10):e1004387 [PMID: 25340792]
  42. Epidemics. 2019 Dec;29:100371 [PMID: 31784341]
  43. J R Soc Interface. 2005 Sep 22;2(4):295-307 [PMID: 16849187]

Word Cloud

Created with Highcharts 10.0.0dynamicswithin-hostongoingmodelinfectiousdiseasepopulationpathogentransmissionexploredcanimmunologicalpotentialindividualimmuneepidemiologicalcriticallyinvolvesreplicationhostmodelingeffortsrecentlycontributeshapingfewercirculationepidemicimpactpresentsimpleinfluenza-inspiredexploresre-exposuresingleoutbreakshaperesponsenon-trivialwaysshowevensimplifiedsystemexhibitcomplexsensitivethresholdsbehavioralsofindstochasticitylikelyplayscriticalrolereinfectionmaintenanceprotectiontimeimmuno-epidemiologicaltransientprotection:casestudyviralrespiratoryinfectionsFlow-kickImmuneboostingImmuno-epidemiologyPrimingnumberViral-immunemathematical

Similar Articles

Cited By