The nuclear lamina is required for proper development and nuclear shape distortion in tomato.

Endia L Blunt, Junsik Choi, Hayley Sussman, Rachel C Christopherson, Patricia Keen, Maryam Rahmati Ishka, Linda Y Li, Joanna M Idrovo, Magdalena M Julkowska, Joyce Van Eck, Eric J Richards
Author Information
  1. Endia L Blunt: The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA. ORCID
  2. Junsik Choi: The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA. ORCID
  3. Hayley Sussman: The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA. ORCID
  4. Rachel C Christopherson: The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA.
  5. Patricia Keen: The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA. ORCID
  6. Maryam Rahmati Ishka: The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA. ORCID
  7. Linda Y Li: The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA. ORCID
  8. Joanna M Idrovo: The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA. ORCID
  9. Magdalena M Julkowska: The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA. ORCID
  10. Joyce Van Eck: The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA. ORCID
  11. Eric J Richards: The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA. ORCID

Abstract

The nuclear lamina in plant cells is composed of plant-specific proteins, including nuclear matrix constituent proteins (NMCPs), which have been postulated to be functional analogs of lamin proteins that provide structural integrity to the organelle and help stabilize the three-dimensional organization of the genome. Using genomic editing, we generated alleles for the three genes encoding NMCPs in cultivated tomato (Solanum lycopersicum) to determine if the consequences of perturbing the nuclear lamina in this crop species were similar to or distinct from those observed in the model Arabidopsis thaliana. Loss of the sole NMCP2-class protein was lethal in tomato but is tolerated in Arabidopsis. Moreover, depletion of NMCP1-type nuclear lamina proteins leads to distinct developmental phenotypes in tomato, including leaf morphology defects and reduced root growth rate (in nmcp1b mutants), compared with cognate mutants in Arabidopsis. These findings suggest that the nuclear lamina interfaces with different developmental and signaling pathways in tomato compared with Arabidopsis. At the subcellular level, however, tomato nmcp mutants resembled their Arabidopsis counterparts in displaying smaller and more spherical nuclei in differentiated cells. This result argues that the plant nuclear lamina facilitates nuclear shape distortion in response to forces exerted on the organelle within the cell.

Keywords

References

  1. Genome Biol. 2019 Apr 30;20(1):87 [PMID: 31039799]
  2. Plant Physiol. 2019 Apr;179(4):1315-1329 [PMID: 30696746]
  3. J Exp Bot. 2021 Sep 30;72(18):6190-6204 [PMID: 34086868]
  4. J Exp Bot. 2013 Apr;64(6):1553-64 [PMID: 23378381]
  5. Curr Opin Cell Biol. 2015 Feb;32:7-12 [PMID: 25460776]
  6. Science. 2012 Aug 17;337(6096):816-21 [PMID: 22745249]
  7. Dev Cell. 2022 Jan 10;57(1):19-31.e6 [PMID: 34822788]
  8. Trends Cell Biol. 2018 Jan;28(1):34-45 [PMID: 28893461]
  9. Nucleus. 2019 Dec;10(1):55-66 [PMID: 30879391]
  10. J Plant Physiol. 2019 Feb;233:20-30 [PMID: 30576929]
  11. Plant J. 2017 Nov;92(4):727-735 [PMID: 28873253]
  12. PLoS Biol. 2022 Oct 21;20(10):e3001831 [PMID: 36269771]
  13. Bioinformatics. 2015 Mar 1;31(5):767-9 [PMID: 25338722]
  14. BMC Evol Biol. 2013 Sep 30;13:214 [PMID: 24283922]
  15. Plant J. 2011 Mar;65(5):724-36 [PMID: 21251100]
  16. Development. 2008 Apr;135(7):1315-24 [PMID: 18305008]
  17. Dev Cell. 2013 Nov 11;27(3):345-52 [PMID: 24229646]
  18. Mol Biol Cell. 2000 Aug;11(8):2733-41 [PMID: 10930466]
  19. Methods Mol Biol. 2019;1917:171-182 [PMID: 30610636]
  20. Chromosome Res. 2014 Jun;22(2):241-52 [PMID: 24801343]
  21. J Clin Invest. 2004 Feb;113(3):370-8 [PMID: 14755334]
  22. Plant Physiol. 2014 Nov;166(3):1292-7 [PMID: 25225186]
  23. J Cell Biol. 2015 Jan 5;208(1):11-22 [PMID: 25559183]
  24. Front Plant Sci. 2021 Feb 17;12:645218 [PMID: 33679862]
  25. EMBO J. 1994 Jul 15;13(14):3378-88 [PMID: 7913892]
  26. Development. 2008 Apr;135(7):1325-34 [PMID: 18305007]
  27. Front Plant Sci. 2021 May 07;12:670306 [PMID: 34025705]
  28. Front Plant Sci. 2014 Feb 26;5:62 [PMID: 24616728]
  29. Nat Commun. 2020 Nov 20;11(1):5914 [PMID: 33219233]
  30. Genetics. 1993 Oct;135(2):575-88 [PMID: 7694886]
  31. Nucleus. 2017 Jan 2;8(1):46-59 [PMID: 27644504]
  32. Plant Cell. 2007 Sep;19(9):2793-803 [PMID: 17873096]
  33. Nat Plants. 2020 Jul;6(7):838-847 [PMID: 32601417]
  34. Chromosoma. 2010 Apr;119(2):195-204 [PMID: 19997923]
  35. Nature. 2003 May 15;423(6937):298-301 [PMID: 12748643]
  36. Methods Mol Biol. 2019;1864:225-234 [PMID: 30415340]
  37. Plant Physiol. 2001 Feb;125(2):615-26 [PMID: 11161019]
  38. Science. 2006 May 19;312(5776):1059-63 [PMID: 16645051]
  39. J Integr Plant Biol. 2016 Jul;58(7):669-78 [PMID: 26564029]
  40. Plant Cell Physiol. 2013 Apr;54(4):622-33 [PMID: 23396599]
  41. Mol Plant. 2017 Oct 9;10(10):1334-1348 [PMID: 28943325]
  42. Nucleus. 2018 Jan 1;9(1):119-124 [PMID: 29227210]
  43. Genomics Proteomics Bioinformatics. 2022 Feb;20(1):4-13 [PMID: 34487862]
  44. Plant Cell Rep. 1989 Mar;7(8):662-4 [PMID: 24240456]
  45. Plant Cell. 2000 Dec;12(12):2425-2440 [PMID: 11148288]
  46. J Biol Chem. 2007 Jul 6;282(27):20015-26 [PMID: 17488709]
  47. Nature. 2012 May 30;485(7400):635-41 [PMID: 22660326]
  48. Plant Cell. 2014 May 13;26(5):2143-2155 [PMID: 24824484]
  49. Science. 2013 Aug 30;341(6149):1240104 [PMID: 23990565]
  50. Ann Bot. 2019 Feb 15;123(3):521-532 [PMID: 30346473]
  51. BMC Plant Biol. 2013 Dec 05;13:200 [PMID: 24308514]
  52. Mol Biol Cell. 2018 Jan 15;29(2):220-233 [PMID: 29142071]
  53. Plant J. 2000 May;22(3):257-64 [PMID: 10849343]
  54. Plant J. 2009 Aug;59(3):499-508 [PMID: 19392710]
  55. Exp Cell Res. 1997 Apr 10;232(1):173-81 [PMID: 9141634]
  56. Proc Natl Acad Sci U S A. 2004 Jul 13;101(28):10428-33 [PMID: 15232008]
  57. Annu Rev Plant Biol. 2017 Apr 28;68:139-172 [PMID: 28226231]
  58. Mol Plant. 2017 Mar 6;10(3):530-532 [PMID: 28089950]
  59. Genes Genet Syst. 2005 Oct;80(5):345-50 [PMID: 16394585]
  60. Curr Opin Cell Biol. 2004 Feb;16(1):68-72 [PMID: 15037307]
  61. New Phytol. 2020 Jul;227(1):65-83 [PMID: 32129897]
  62. PLoS One. 2014 Mar 25;9(3):e93406 [PMID: 24667841]
  63. Annu Rev Biochem. 2015;84:131-64 [PMID: 25747401]
  64. Curr Biol. 2013 Sep 23;23(18):1776-81 [PMID: 23973298]
  65. Plant Physiol. 2008 May;147(1):128-42 [PMID: 18322146]
  66. Front Plant Sci. 2020 Jan 09;10:1639 [PMID: 31998332]
  67. Plant Physiol. 2011 Sep;157(1):29-39 [PMID: 21771915]
  68. Elife. 2013 Jan 29;2:e00471 [PMID: 23386978]

MeSH Term

Nuclear Lamina
Solanum lycopersicum
Arabidopsis
Cell Nucleus
Plant Proteins
Nuclear Proteins
Nuclear Matrix-Associated Proteins

Chemicals

Plant Proteins
Nuclear Proteins
Nuclear Matrix-Associated Proteins

Word Cloud

Created with Highcharts 10.0.0nuclearlaminatomatoArabidopsisproteinsmutantsshapeplantcellsincludingNMCPsorganelledistinctdevelopmentalmorphologyrootgrowthcompareddistortioncomposedplant-specificmatrixconstituentpostulatedfunctionalanalogslaminprovidestructuralintegrityhelpstabilizethree-dimensionalorganizationgenomeUsinggenomiceditinggeneratedallelesthreegenesencodingcultivatedSolanumlycopersicumdetermineconsequencesperturbingcropspeciessimilarobservedmodelthalianaLosssoleNMCP2-classproteinlethaltoleratedMoreoverdepletionNMCP1-typeleadsphenotypesleafdefectsreducedratenmcp1bcognatefindingssuggestinterfacesdifferentsignalingpathwayssubcellularlevelhowevernmcpresembledcounterpartsdisplayingsmallersphericalnucleidifferentiatedresultarguesfacilitatesresponseforcesexertedwithincellrequiredproperdevelopmentLeafsize

Similar Articles

Cited By