Characterisation of Antennal Sensilla and Electroantennography Responses of the Dung Beetles , and (Coleoptera: Scarabaeoidea) to Dung Volatile Organic Compounds.

Nisansala N Perera, Russell A Barrow, Paul A Weston, Vivien Rolland, Philip Hands, Saliya Gurusinghe, Leslie A Weston, Geoff M Gurr
Author Information
  1. Nisansala N Perera: Gulbali Institute of Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia. ORCID
  2. Russell A Barrow: Gulbali Institute of Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia. ORCID
  3. Paul A Weston: Gulbali Institute of Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia. ORCID
  4. Vivien Rolland: CSIRO, Agriculture and Food, Canberra, ACT 2601, Australia. ORCID
  5. Philip Hands: CSIRO, Agriculture and Food, Canberra, ACT 2601, Australia. ORCID
  6. Saliya Gurusinghe: Gulbali Institute of Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia. ORCID
  7. Leslie A Weston: Gulbali Institute of Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia. ORCID
  8. Geoff M Gurr: Gulbali Institute of Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia. ORCID

Abstract

Locating sporadically distributed food resources and mate finding are strongly aided by volatile cues for most insects, including dung beetles. However, there is limited information on the olfactory ecology of dung beetles. We conducted a scanning electron microscopy study on the morphology and distribution of the antennal sensilla of three introduced dung beetle species in Australia: (Coleoptera: Geotrupidae), and (Coleoptera: Scarabaeidae). Three main morphological types of antennal sensilla were identified: sensilla trichodea (ST), sensilla basiconica (SB) and sensilla chaetica (SCh). Distinct variations of SB distribution were observed in and and on different lamellar surfaces in both sexes of all three species. Sexual dimorphism in antennal sensilla distribution or their abundance was not evident. To complement the morphological characterisation of sensilla, electroantennography (EAG) was carried out to construct EAG response profiles of the three species to selected dung volatiles. An initial study revealed that antennae of all species were sensitive to a mix of phenol, skatole, indole, -cresol, butanone and butyric acid, common components of livestock dung headspace. In addition to these six compounds, dimethyl sulfide, dimethyl disulfide, eucalyptol and toluene were tested for antennal activity. All compounds evoked measurable EAG responses, confirming antennal sensitivity. exhibited significant responses to all the compounds compared to the control, whereas and only responded to a subset of compounds. A comparison of relative EAG amplitudes revealed highly significant responses to -cresol in and to skatole in . displayed differential responses to all the compounds. Pooled EAG data suggest highly significant differences in responses among the three species and among compounds. Our findings suggest that a blend of volatiles may offer potential for the trapping of dung beetles, thereby avoiding the use of dung baits that are inconvenient, inconsistent and may pose a threat to farm biosecurity.

Keywords

References

  1. J Exp Biol. 2010 Sep 15;213(Pt 18):3177-86 [PMID: 20802120]
  2. Sci Rep. 2022 Nov 7;12(1):18882 [PMID: 36344566]
  3. Microsc Res Tech. 2022 Apr;85(4):1588-1596 [PMID: 34894027]
  4. J Insect Physiol. 2013 Nov;59(11):1169-77 [PMID: 24035746]
  5. PLoS One. 2018 Nov 1;13(11):e0206526 [PMID: 30383860]
  6. Nature. 2008 Apr 24;452(7190):1007-11 [PMID: 18408711]
  7. J Chem Ecol. 2010 Aug;36(8):797-800 [PMID: 20623327]
  8. J Insect Physiol. 2001 Sep;47(9):1065-1076 [PMID: 11472769]
  9. Chem Senses. 2002 May;27(4):343-52 [PMID: 12006374]
  10. Annu Rev Entomol. 2013;58:373-91 [PMID: 23020622]
  11. Chem Senses. 2011 Jul;36(6):499-513 [PMID: 21422377]
  12. Molecules. 2022 Jun 28;27(13): [PMID: 35807397]
  13. Methods Mol Biol. 2013;1068:157-77 [PMID: 24014360]
  14. Nature. 2008 Apr 24;452(7190):1002-6 [PMID: 18408712]
  15. Yale J Biol Med. 2018 Dec 21;91(4):457-469 [PMID: 30588211]
  16. Environ Entomol. 2021 Aug 12;50(4):762-780 [PMID: 33860802]
  17. Environ Entomol. 2015 Feb;44(1):106-13 [PMID: 26308812]
  18. Elife. 2019 Oct 25;8: [PMID: 31651397]
  19. Neuron. 2011 Dec 8;72(5):698-711 [PMID: 22153368]
  20. Environ Entomol. 2012 Apr;41(2):238-44 [PMID: 22506995]
  21. Malar J. 2006 Mar 30;5:26 [PMID: 16573828]
  22. Ciba Found Symp. 1996;200:158-74; discussion 174-7 [PMID: 8894297]
  23. Insects. 2020 Jul 27;11(8): [PMID: 32727148]
  24. Micron. 2018 Aug;111:9-18 [PMID: 29804006]
  25. Naturwissenschaften. 2009 Aug;96(8):889-99 [PMID: 19404598]
  26. J Chem Ecol. 2021 May;47(4-5):433-443 [PMID: 33830431]
  27. J Chem Ecol. 1988 Nov;14(11):2071-98 [PMID: 24277145]
  28. J Chem Ecol. 2021 Dec;47(12):987-997 [PMID: 34370165]
  29. J Egypt Soc Parasitol. 2013 Aug;43(2):481-91 [PMID: 24260827]
  30. J Insect Physiol. 2010 Jun;56(6):659-65 [PMID: 20153749]
  31. Cell Tissue Res. 1998 Mar;291(3):525-36 [PMID: 9477309]
  32. PLoS One. 2008 Aug 22;3(8):e3045 [PMID: 18725946]
  33. Sci Rep. 2016 Jan 05;6:18140 [PMID: 26728164]
  34. J Chem Ecol. 2022 Oct;48(9-10):690-703 [PMID: 36083414]
  35. Arthropod Struct Dev. 2002 Sep;31(1):1-13 [PMID: 18088966]
  36. New Phytol. 2020 Dec;228(5):1662-1673 [PMID: 33460187]
  37. Life (Basel). 2021 Aug 25;11(9): [PMID: 34575022]
  38. Chem Senses. 2004 Feb;29(2):117-25 [PMID: 14977808]
  39. Tissue Cell. 1994 Aug;26(4):489-502 [PMID: 18621276]
  40. Neotrop Entomol. 2014 Jun;43(3):260-5 [PMID: 27193622]
  41. Microsc Res Tech. 2016 Mar;79(3):178-91 [PMID: 26789276]

Grants

  1. RnD4Profit-16-03-016/Meat and Livestock Australia
  2. RnD4Profit-16-03-016/Australian Department of Agriculture, Fisheries and Forestry

Word Cloud

Created with Highcharts 10.0.0dungsensillacompoundsantennalspeciesEAGresponsesthreebeetlesdistributionColeoptera:significantstudymorphologicaltrichodeabasiconicaSBchaeticavolatilesrevealedskatole-cresoldimethylhighlysuggestamongmayDungLocatingsporadicallydistributedfoodresourcesmatefindingstronglyaidedvolatilecuesinsectsincludingHoweverlimitedinformationolfactoryecologyconductedscanningelectronmicroscopymorphologyintroducedbeetleAustralia:GeotrupidaeScarabaeidaeThreemaintypesidentified:STSChDistinctvariationsobserveddifferentlamellarsurfacessexesSexualdimorphismabundanceevidentcomplementcharacterisationelectroantennographycarriedconstructresponseprofilesselectedinitialantennaesensitivemixphenolindolebutanonebutyricacidcommoncomponentslivestockheadspaceadditionsixsulfidedisulfideeucalyptoltoluenetestedactivityevokedmeasurableconfirmingsensitivityexhibitedcomparedcontrolwhereasrespondedsubsetcomparisonrelativeamplitudesdisplayeddifferentialPooleddatadifferencesfindingsblendofferpotentialtrappingtherebyavoidingusebaitsinconvenientinconsistentposethreatfarmbiosecurityCharacterisationAntennalSensillaElectroantennographyResponsesBeetlesScarabaeoideaVolatileOrganicCompoundsattractantinsectolfaction

Similar Articles

Cited By