VGG16 Feature Extractor with Extreme Gradient Boost Classifier for Pancreas Cancer Prediction.

Wilson Bakasa, Serestina Viriri
Author Information
  1. Wilson Bakasa: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban 4041, South Africa. ORCID
  2. Serestina Viriri: School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban 4041, South Africa. ORCID

Abstract

The prognosis of patients with pancreatic ductal adenocarcinoma (PDAC) is greatly improved by an early and accurate diagnosis. Several studies have created automated methods to forecast PDAC development utilising various medical imaging modalities. These papers give a general overview of the classification, segmentation, or grading of many cancer types utilising conventional machine learning techniques and hand-engineered characteristics, including pancreatic cancer. This study uses cutting-edge deep learning techniques to identify PDAC utilising computerised tomography (CT) medical imaging modalities. This work suggests that the hybrid model VGG16-XGBoost (VGG16-backbone feature extractor and Extreme Gradient Boosting-classifier) for PDAC images. According to studies, the proposed hybrid model performs better, obtaining an accuracy of 0.97 and a weighted F1 score of 0.97 for the dataset under study. The experimental validation of the VGG16-XGBoost model uses the Cancer Imaging Archive (TCIA) public access dataset, which has pancreas CT images. The results of this study can be extremely helpful for PDAC diagnosis from computerised tomography (CT) pancreas images, categorising them into five different tumours (T), node (N), and metastases (M) (TNM) staging system class labels, which are T0, T1, T2, T3, and T4.

Keywords

References

  1. Med Biol Eng Comput. 2019 Jan;57(1):193-203 [PMID: 30076537]
  2. Sensors (Basel). 2021 Feb 20;21(4): [PMID: 33672585]
  3. Sensors (Basel). 2021 Jun 18;21(12): [PMID: 34207196]
  4. Diagnostics (Basel). 2022 Jul 19;12(7): [PMID: 35885650]
  5. Entropy (Basel). 2022 May 09;24(5): [PMID: 35626550]
  6. J Pers Med. 2020 Mar 31;10(2): [PMID: 32244292]
  7. Sensors (Basel). 2020 Apr 30;20(9): [PMID: 32365925]
  8. Sensors (Basel). 2020 Nov 09;20(21): [PMID: 33182270]
  9. Sensors (Basel). 2021 Jan 22;21(3): [PMID: 33499364]
  10. Diagnostics (Basel). 2023 Mar 29;13(7): [PMID: 37046507]
  11. Biology (Basel). 2021 Oct 22;10(11): [PMID: 34827077]
  12. Brain Sci. 2020 Feb 20;10(2): [PMID: 32093401]
  13. J Am Coll Radiol. 2018 Mar;15(3 Pt B):512-520 [PMID: 29398494]
  14. Sensors (Basel). 2020 Aug 05;20(16): [PMID: 32764398]
  15. Artif Intell Med. 2020 Apr;104:101822 [PMID: 32499001]
  16. IEEE Trans Radiat Plasma Med Sci. 2019 Mar;3(2):162-169 [PMID: 34722958]
  17. Am J Pathol. 2019 Jan;189(1):9-21 [PMID: 30558727]
  18. Cancer Genomics Proteomics. 2018 Jan-Feb;15(1):41-51 [PMID: 29275361]
  19. Diagnostics (Basel). 2021 Aug 16;11(8): [PMID: 34441419]
  20. Sensors (Basel). 2020 Oct 22;20(21): [PMID: 33105736]
  21. Sensors (Basel). 2022 Mar 02;22(5): [PMID: 35271115]
  22. Med Hypotheses. 2020 Jan;134:109531 [PMID: 31877442]
  23. J Pers Med. 2022 Sep 01;12(9): [PMID: 36143229]
  24. Healthcare (Basel). 2022 Jun 24;10(7): [PMID: 35885710]
  25. AJR Am J Roentgenol. 1997 Jun;168(6):1439-43 [PMID: 9168704]
  26. Sensors (Basel). 2020 Mar 13;20(6): [PMID: 32183184]
  27. Adv Exp Med Biol. 2020;1213:3-21 [PMID: 32030660]
  28. Front Public Health. 2020 Jul 03;8:357 [PMID: 32719767]
  29. J Imaging. 2020 Jun 19;6(6): [PMID: 34460597]
  30. AJR Am J Roentgenol. 2017 Jul;209(1):77-87 [PMID: 28418702]

Word Cloud

Created with Highcharts 10.0.0PDACutilisingstudycomputerisedtomographyCTmodelimagespancreaticdiagnosisstudiesmedicalimagingmodalitiesclassificationcancerlearningtechniquesuseshybridVGG16-XGBoostfeatureExtremeGradient097datasetCancerpancreasVGG16prognosispatientsductaladenocarcinomagreatlyimprovedearlyaccurateSeveralcreatedautomatedmethodsforecastdevelopmentvariouspapersgivegeneraloverviewsegmentationgradingmanytypesconventionalmachinehand-engineeredcharacteristicsincludingcutting-edgedeepidentifyworksuggestsVGG16-backboneextractorBoosting-classifierAccordingproposedperformsbetterobtainingaccuracyweightedF1scoreexperimentalvalidationImagingArchiveTCIApublicaccessresultscanextremelyhelpfulcategorisingfivedifferenttumoursTnodeNmetastasesMTNMstagingsystemclasslabelsT0T1T2T3T4FeatureExtractorBoostClassifierPancreasPredictionXGBoostextraction

Similar Articles

Cited By