Radical-Driven Methane Formation in Humans Evidenced by Exogenous Isotope-Labeled DMSO and Methionine.

Frank Keppler, Mihály Boros, Daniela Polag
Author Information
  1. Frank Keppler: Institute of Earth Sciences, Heidelberg University, D-69120 Heidelberg, Germany. ORCID
  2. Mihály Boros: Institute of Surgical Research, University of Szeged, H-6724 Szeged, Hungary.
  3. Daniela Polag: Institute of Earth Sciences, Heidelberg University, D-69120 Heidelberg, Germany.

Abstract

Methane (CH), which is produced endogenously in animals and plants, was recently suggested to play a role in cellular physiology, potentially influencing the signaling pathways and regulatory mechanisms involved in nitrosative and oxidative stress responses. In addition, it was proposed that the supplementation of CH to organisms may be beneficial for the treatment of several diseases, including ischemia, reperfusion injury, and inflammation. However, it is still unclear whether and how CH is produced in mammalian cells without the help of microorganisms, and how CH might be involved in physiological processes in humans. In this study, we produced the first evidence of the principle that CH is formed non-microbially in the human body by applying isotopically labeled methylated sulfur compounds, such as dimethyl sulfoxide (DMSO) and methionine, as carbon precursors to confirm cellular CH formation. A volunteer applied isotopically labeled (H and C) DMSO on the skin, orally, and to blood samples. The monitoring of stable isotope values of CH convincingly showed the conversion of the methyl groups, as isotopically labeled CH was formed during all experiments. Based on these results, we considered several hypotheses about endogenously formed CH in humans, including physiological aspects and stress responses involving reactive oxygen species (ROS). While further and broader validation studies are needed, the results may unambiguously serve as a proof of concept for the endogenous formation of CH in humans via a radical-driven process. Furthermore, these results might encourage follow-up studies to decipher the potential physiological role of CH and its bioactivity in humans in more detail. Of particular importance is the potential to monitor CH as an oxidative stress biomarker if the observed large variability of CH in breath air is an indicator of physiological stress responses and immune reactions. Finally, the potential role of DMSO as a radical scavenger to counteract oxidative stress caused by ROS might be considered in the health sciences. DMSO has already been investigated for many years, but its potential positive role in medical use remains highly uncertain.

Keywords

References

  1. Plant Biol (Stuttg). 2014 Mar;16(2):512-6 [PMID: 24400835]
  2. Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):623-8 [PMID: 24379389]
  3. J Agric Food Chem. 1981 Sep-Oct;29(5):1089-91 [PMID: 7309994]
  4. Plant Biol (Stuttg). 2009 Nov;11 Suppl 1:43-8 [PMID: 19778367]
  5. Cell Physiol Biochem. 2008;21(1-3):251-8 [PMID: 18209491]
  6. J Gastrointestin Liver Dis. 2012 Jun;21(2):157-63 [PMID: 22720304]
  7. J Heart Lung Transplant. 2021 Mar;40(3):183-192 [PMID: 33277170]
  8. J Breath Res. 2016 Jan 29;10(1):016003 [PMID: 26824393]
  9. Rejuvenation Res. 2019 Feb;22(1):31-42 [PMID: 29926769]
  10. Chemosphere. 2010 Jun;80(3):286-92 [PMID: 20444486]
  11. Nat Rev Mol Cell Biol. 2020 Jul;21(7):363-383 [PMID: 32231263]
  12. Free Radic Biol Med. 2021 Jan;162:555-560 [PMID: 33217506]
  13. FASEB J. 2003 Jun;17(9):1124-6 [PMID: 12692080]
  14. Skin Pharmacol Physiol. 2015;28(5):264-8 [PMID: 26227304]
  15. Biochem Soc Symp. 1995;61:1-31 [PMID: 8660387]
  16. BMC Med Genomics. 2009 Jan 08;2:2 [PMID: 19133145]
  17. Front Cell Dev Biol. 2022 Jan 07;9:824749 [PMID: 35071248]
  18. Dig Dis Sci. 1987 Mar;32(3):267-71 [PMID: 3816480]
  19. Water Res. 2004 May;38(10):2579-88 [PMID: 15159161]
  20. Cells. 2019 Jul 30;8(8): [PMID: 31366062]
  21. J Breath Res. 2015 Mar 09;9(1):016009 [PMID: 25749807]
  22. Physiol Plant. 2012 Mar;144(3):201-9 [PMID: 22136562]
  23. Gut. 1980 Nov;21(11):951-4 [PMID: 7450560]
  24. Plant Cell Environ. 2015 May;38(5):980-9 [PMID: 25443986]
  25. Annu Rev Biochem. 2022 Jun 21;91:475-504 [PMID: 35320685]
  26. J Neurogastroenterol Motil. 2014 Jan;20(1):31-40 [PMID: 24466443]
  27. Sci Rep. 2019 Mar 15;9(1):4641 [PMID: 30874586]
  28. Nature. 2006 Jan 12;439(7073):187-91 [PMID: 16407949]
  29. Trends Plant Sci. 2017 Jan;22(1):11-19 [PMID: 27666517]
  30. Arch Biochem Biophys. 2016 Aug 1;603:48-53 [PMID: 27173735]
  31. Crit Care Med. 2012 Apr;40(4):1269-78 [PMID: 22336723]
  32. J Plant Physiol. 2019 Feb;233:12-19 [PMID: 30576928]
  33. J Exp Med. 1971 Mar 1;133(3):572-88 [PMID: 5111441]
  34. Cancer Med. 2022 Oct;11(20):3837-3853 [PMID: 35460205]
  35. Cryobiology. 1986 Feb;23(1):14-27 [PMID: 3007027]
  36. Nature. 2022 Mar;603(7901):396-397 [PMID: 35264800]
  37. Int J Med Microbiol. 2009 Feb;299(2):99-108 [PMID: 18757236]
  38. Free Radic Biol Med. 2019 Feb 1;131:1-6 [PMID: 30458276]
  39. Arch Biochem Biophys. 1968 Mar 11;123(3):468-76 [PMID: 4297037]
  40. Adv Exp Med Biol. 2014;844:201-25 [PMID: 25480643]
  41. FASEB J. 2014 Mar;28(3):1317-30 [PMID: 24327606]
  42. Clin Transl Med. 2022 Jul;12(7):e905 [PMID: 35839303]
  43. J Invest Dermatol. 2008 Oct;128(10):2491-7 [PMID: 18449210]
  44. Dig Dis Sci. 1993 Mar;38(3):445-8 [PMID: 8444074]
  45. Am J Gastroenterol. 2010 Jun;105(6):1250-6 [PMID: 20216536]
  46. Nat Commun. 2012;3:1046 [PMID: 22948828]
  47. Chemistry. 2008;14(19):5880-9 [PMID: 18481834]
  48. J Gastroenterol. 2006 May;41(5):444-9 [PMID: 16799886]
  49. Plant Cell Environ. 2009 Jan;32(1):1-9 [PMID: 18811731]
  50. J Chromatogr B Analyt Technol Biomed Life Sci. 2014 May 15;959:62-70 [PMID: 24768920]
  51. Dig Dis Sci. 2010 Feb;55(2):398-403 [PMID: 19294509]
  52. Dig Dis Sci. 2011 Jun;56(6):1612-8 [PMID: 21286935]
  53. Sci Total Environ. 2014 May 15;481:582-7 [PMID: 24631621]
  54. Curr Biol. 2013 Aug 5;23(15):R642-6 [PMID: 23928078]
  55. Am J Physiol Cell Physiol. 2013 Jan 15;304(2):C207-14 [PMID: 23174561]
  56. Phys Chem Chem Phys. 2008 Dec 7;10(45):6867-79 [PMID: 19015793]
  57. Chem Rev. 2017 Apr 26;117(8):5521-5577 [PMID: 28418240]
  58. Nat Commun. 2014 Jun 24;5:4205 [PMID: 24957135]
  59. World J Gastroenterol. 2012 Nov 7;18(41):5932-9 [PMID: 23139610]
  60. Sci Rep. 2017 Aug 4;7(1):7329 [PMID: 28779149]
  61. J Photochem Photobiol B. 2017 Jan;166:193-201 [PMID: 27960115]
  62. J Breath Res. 2013 Jun;7(2):024001 [PMID: 23470880]
  63. Isotopes Environ Health Stud. 2012 Sep;48(3):393-409 [PMID: 22462621]
  64. Chemistry. 2017 Aug 1;23(43):10465-10472 [PMID: 28589711]
  65. Nature. 2022 Mar;603(7901):482-487 [PMID: 35264795]
  66. Physiol Plant. 2009 Oct;137(2):139-47 [PMID: 19678898]
  67. Sci Total Environ. 2022 Aug 10;833:155241 [PMID: 35421492]
  68. Sci Total Environ. 2018 May 15;624:69-77 [PMID: 29247906]
  69. J Cell Mol Med. 2021 Jun;25(11):5113-5123 [PMID: 33942485]
  70. Clin Gastroenterol Hepatol. 2006 Feb;4(2):123-9 [PMID: 16469670]
  71. Environ Sci Technol. 2020 Feb 4;54(3):1451-1463 [PMID: 31909604]
  72. Int J Mol Sci. 2019 Jul 08;20(13): [PMID: 31288391]
  73. Front Physiol. 2019 Sep 27;10:1244 [PMID: 31611816]
  74. Gut. 2001 Feb;48(2):198-205 [PMID: 11156640]
  75. New Phytol. 2008;180(1):124-132 [PMID: 18657215]
  76. Sci Adv. 2020 Jan 15;6(3):eaax5343 [PMID: 31998836]

Word Cloud

Created with Highcharts 10.0.0CHstressDMSOproducedroleoxidativephysiologicalhumanspotentialendogenouslyresponsesmightformedisotopicallylabeledmethylresultsMethanecellularinvolvedmayseveralincludingdimethylsulfoxidecarbonformationstableisotopeconsideredreactiveoxygenspeciesROSstudiesanimalsplantsrecentlysuggestedplayphysiologypotentiallyinfluencingsignalingpathwaysregulatorymechanismsnitrosativeadditionproposedsupplementationorganismsbeneficialtreatmentdiseasesischemiareperfusioninjuryinflammationHoweverstillunclearwhethermammaliancellswithouthelpmicroorganismsprocessesstudyfirstevidenceprinciplenon-microbiallyhumanbodyapplyingmethylatedsulfurcompoundsmethionineprecursorsconfirmvolunteerappliedHCskinorallybloodsamplesmonitoringvaluesconvincinglyshowedconversiongroupsexperimentsBasedhypothesesaspectsinvolvingbroadervalidationneededunambiguouslyserveproofconceptendogenousviaradical-drivenprocessFurthermoreencouragefollow-updecipherbioactivitydetailparticularimportancemonitorbiomarkerobservedlargevariabilitybreathairindicatorimmunereactionsFinallyradicalscavengercounteractcausedhealthsciencesalreadyinvestigatedmanyyearspositivemedicaluseremainshighlyuncertainRadical-DrivenFormationHumansEvidencedExogenousIsotope-LabeledMethionineantioxidantdefensesystemmethanedonorsradicalshydrogenlabeling

Similar Articles

Cited By