Interference with Bacterial Conjugation and Natural Alternatives to Antibiotics: Bridging a Gap.

Micaela Guidotti-Takeuchi, Roberta Torres de Melo, Lígia Nunes de Morais Ribeiro, Carolyne Ferreira Dumont, Rosanne Aparecida Capanema Ribeiro, Bárbara de Araújo Brum, Tanaje Luiz Izidio Ferreira de Amorim Junior, Daise Aparecida Rossi
Author Information
  1. Micaela Guidotti-Takeuchi: Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil. ORCID
  2. Roberta Torres de Melo: Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil. ORCID
  3. Lígia Nunes de Morais Ribeiro: Institute of Biotechnology, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil. ORCID
  4. Carolyne Ferreira Dumont: Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil.
  5. Rosanne Aparecida Capanema Ribeiro: Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil.
  6. Bárbara de Araújo Brum: Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil.
  7. Tanaje Luiz Izidio Ferreira de Amorim Junior: Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil.
  8. Daise Aparecida Rossi: Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, MG, Brazil. ORCID

Abstract

Horizontal gene transfer (HGT) in food matrices has been investigated under conditions that favor gene exchange. However, the major challenge lies in determining the specific conditions pertaining to the adapted microbial pairs associated with the food matrix. HGT is primarily responsible for enhancing the microbial repertoire for the evolution and spread of antimicrobial resistance and is a major target for controlling pathogens of public health concern in food ecosystems. In this study, we investigated Heidelberg (SH) and (EC) regarding gene exchange under conditions mimicking the industrial environment, with the coproducts whey (SL) and chicken juice (CJ). The Heidelberg strain was characterized by antibiotic susceptibility standards and PCR to detect the gene. A concentration of 0.39 mg/mL was determined to evaluate the anti-conjugation activity of nanostructured lipid nanocarriers (NLCs) of essential oils to mitigate β-lactam resistance gene transfer. The results showed that the addition of these coproducts promoted an increase of more than 3.5 (whey) and 2.5 (chicken juice) orders of magnitude in the conjugation process ( < 0.01), and NLCs of sage essential oil significantly reduced the conjugation frequency (CF) by 74.90, 90.6, and 124.4 times when compared to the transfers in the absence of coproducts and the presence of SL and CJ, respectively. For NLCs from olibanum essential oil, the decrease was 4.46-fold for conjugations without inhibitors and 3.12- and 11.3-fold in the presence of SL and CJ. NLCs associated with sage and olibanum essential oils effectively control the transfer of antibiotic resistance genes and are a promising alternative for use at industrial levels.

Keywords

References

  1. Microbiol Mol Biol Rev. 2013 Dec;77(4):628-95 [PMID: 24296575]
  2. Appl Environ Microbiol. 2007 Aug;73(15):4785-90 [PMID: 17557857]
  3. EMBO Rep. 2019 Feb;20(2): [PMID: 30602585]
  4. Foods. 2022 Aug 05;11(15): [PMID: 35954103]
  5. Sci Rep. 2020 May 4;10(1):7464 [PMID: 32366826]
  6. Foods. 2022 Sep 22;11(19): [PMID: 36230040]
  7. Antibiotics (Basel). 2022 Mar 15;11(3): [PMID: 35326852]
  8. Pharmaceutics. 2018 Nov 14;10(4): [PMID: 30441802]
  9. PLoS One. 2016 Jan 26;11(1):e0148098 [PMID: 26812051]
  10. Front Microbiol. 2017 Nov 30;8:2329 [PMID: 29255449]
  11. Front Cell Infect Microbiol. 2021 Jan 08;10:571040 [PMID: 33489930]
  12. Curr Opin Microbiol. 2021 Aug;62:103-109 [PMID: 34098510]
  13. J Infect Public Health. 2019 Mar - Apr;12(2):252-257 [PMID: 30466903]
  14. Front Microbiol. 2017 Jul 18;8:1332 [PMID: 28769900]
  15. ACS Omega. 2020 Apr 08;5(15):8572-8578 [PMID: 32337419]
  16. Front Microbiol. 2021 Jun 04;12:673260 [PMID: 34149661]
  17. Adv Pharm Bull. 2016 Jun;6(2):143-51 [PMID: 27478775]
  18. Appl Environ Microbiol. 2007 Oct;73(20):6686-90 [PMID: 17720829]
  19. Front Microbiol. 2021 Jun 18;12:674147 [PMID: 34220757]
  20. Plasmid. 1999 Sep;42(2):73-91 [PMID: 10489325]
  21. Nat Rev Microbiol. 2003 Nov;1(2):137-49 [PMID: 15035043]
  22. Methods Mol Biol. 2020;2075:93-98 [PMID: 31584156]
  23. Front Vet Sci. 2021 Jun 11;8:614439 [PMID: 34179153]
  24. Drug Dev Res. 2019 Feb;80(1):19-23 [PMID: 30343487]
  25. Appl Environ Microbiol. 2014 Nov;80(22):7053-60 [PMID: 25192991]
  26. mSystems. 2020 Feb 18;5(1): [PMID: 32071160]
  27. Nat Commun. 2023 Apr 5;14(1):1879 [PMID: 37019921]
  28. Microbiome. 2020 Jun 26;8(1):99 [PMID: 32591006]
  29. Bioelectrochemistry. 2019 Aug;128:193-203 [PMID: 31004913]
  30. Front Microbiol. 2022 Jun 28;13:894849 [PMID: 35836416]
  31. Nature. 2022 Jan 31;: [PMID: 35102288]
  32. BMC Microbiol. 2020 May 26;20(1):135 [PMID: 32456625]
  33. Int J Mol Sci. 2009 Apr 07;10(4):1538-1551 [PMID: 19468324]
  34. Appl Environ Microbiol. 2019 Oct 30;85(22): [PMID: 31471306]
  35. Microbiol Mol Biol Rev. 2009 Dec;73(4):775-808 [PMID: 19946141]
  36. J Biol Chem. 2018 Oct 26;293(43):16923-16930 [PMID: 30201608]
  37. Genes (Basel). 2020 Oct 22;11(11): [PMID: 33105635]
  38. J Hazard Mater. 2022 Aug 5;435:128889 [PMID: 35472548]
  39. Appl Environ Microbiol. 2022 Oct 11;88(19):e0112122 [PMID: 36094214]
  40. Biomedicines. 2020 Sep 19;8(9): [PMID: 32961700]
  41. Curr Opin Microbiol. 2021 Dec;64:152-158 [PMID: 34739920]
  42. J Ethnopharmacol. 2023 Aug 10;312:116484 [PMID: 37044231]
  43. Molecules. 2019 Nov 27;24(23): [PMID: 31783509]
  44. Sci Rep. 2018 Jan 12;8(1):609 [PMID: 29330542]
  45. Front Microbiol. 2021 Oct 04;12:750200 [PMID: 34671336]
  46. J Dairy Sci. 1994 Sep;77(9):2787-808 [PMID: 7814746]
  47. Food Res Int. 2022 Jul;157:111263 [PMID: 35761575]
  48. Mol Microbiol. 2004 Dec;54(5):1199-211 [PMID: 15554962]
  49. Pharmaceutics. 2022 Jan 13;14(1): [PMID: 35057078]
  50. Front Microbiol. 2018 Sep 11;9:2122 [PMID: 30254617]
  51. Biotechnol Biofuels Bioprod. 2023 Feb 23;16(1):30 [PMID: 36823649]
  52. Antioxidants (Basel). 2022 Apr 21;11(5): [PMID: 35624672]
  53. EFSA J. 2018 Aug 27;16(Suppl 1):e160811 [PMID: 32626061]
  54. Mob Genet Elements. 2016 Nov 4;6(6):e1256851 [PMID: 28090382]
  55. Front Microbiol. 2023 Aug 04;14:1220579 [PMID: 37601348]
  56. Nat Microbiol. 2022 Jul;7(7):1016-1027 [PMID: 35697796]
  57. Microb Drug Resist. 2004 Winter;10(4):334-40 [PMID: 15650379]
  58. Antibiotics (Basel). 2020 Jul 15;9(7): [PMID: 32679663]
  59. J Control Release. 2011 Dec 10;156(2):128-45 [PMID: 21763369]
  60. Int J Food Microbiol. 2019 Dec 2;311:108357 [PMID: 31536878]
  61. Nat Commun. 2017 Nov 22;8(1):1689 [PMID: 29162798]
  62. EcoSal Plus. 2016 Oct;7(1): [PMID: 27735785]
  63. Microbiology (Reading). 2005 Nov;151(Pt 11):3517-3526 [PMID: 16272375]
  64. Nat Microbiol. 2016 Apr 11;1(6):16044 [PMID: 27572835]
  65. Adv Mater. 2020 Dec;32(52):e2005679 [PMID: 33179362]
  66. Plasmid. 2020 Mar;108:102489 [PMID: 31926878]
  67. J Pharm Biomed Anal. 2011 Dec 15;56(5):998-1005 [PMID: 21855244]
  68. J Glob Antimicrob Resist. 2016 Jun;5:15-21 [PMID: 27436460]
  69. Sci Total Environ. 2021 Dec 1;798:149174 [PMID: 34375245]
  70. J Dairy Sci. 2021 Jun;104(6):6508-6515 [PMID: 33741166]
  71. Magn Reson Imaging. 1994;12(3):477-86 [PMID: 8007778]
  72. J Antimicrob Chemother. 2009 Jan;63(1):215-6 [PMID: 18971216]
  73. J Hazard Mater. 2016 Aug 15;314:121-128 [PMID: 27111425]
  74. PLoS One. 2022 Jul 7;17(7):e0270205 [PMID: 35797379]
  75. Microorganisms. 2022 Jul 26;10(8): [PMID: 35893562]
  76. Food Chem. 2015 Aug 15;181:31-7 [PMID: 25794717]
  77. mBio. 2015 Sep 01;6(5):e01032-15 [PMID: 26330514]
  78. Genome Announc. 2018 May 24;6(21): [PMID: 29798920]
  79. Lett Appl Microbiol. 2008 Feb;46(2):210-5 [PMID: 18028324]
  80. Braz J Microbiol. 2016 Apr-Jun;47(2):444-51 [PMID: 26991276]
  81. FEMS Microbiol Rev. 2010 Jan;34(1):18-40 [PMID: 19919603]

Word Cloud

Similar Articles

Cited By