Genetic Markers for Metabarcoding of Freshwater Microalgae: Review.

Elena Kezlya, Natalia Tseplik, Maxim Kulikovskiy
Author Information
  1. Elena Kezlya: Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia. ORCID
  2. Natalia Tseplik: Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia. ORCID
  3. Maxim Kulikovskiy: Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia.

Abstract

The metabarcoding methods for studying the diversity of freshwater microalgae and routine biomonitoring are actively used in modern research. A lot of experience has been accumulated already, and many methodological questions have been solved (such as the influence of the methods and time of sample conservation, DNA extraction and bioinformatical processing). The reproducibility of the method has been tested and confirmed. However, one of the main problems-choosing a genetic marker for the study-still lacks a clear answer. We analyzed 70 publications and found out that studies on eukaryotic freshwater microalgae use 12 markers (different nuclear regions 18S and ITS and plastids L, 23S and 16S). Each marker has its peculiarities; they amplify differently and have various levels of efficiency (variability) in different groups of algae. The V4 and V9 18S and L regions are used most often. We concentrated especially on the studies that compare the results of using different markers and microscopy. We summarize the data on the primers for each region and on how the choice of a marker affects the taxonomic composition of a community.

Keywords

References

  1. Appl Environ Microbiol. 2016 Sep 16;82(19):5878-91 [PMID: 27451454]
  2. Microb Ecol. 2021 Feb;81(2):323-334 [PMID: 32860076]
  3. Water Res. 2021 Mar 1;191:116767 [PMID: 33418487]
  4. Sci Total Environ. 2018 Oct 1;637-638:1295-1310 [PMID: 29801222]
  5. Sci Rep. 2019 Sep 4;9(1):12783 [PMID: 31484981]
  6. Database (Oxford). 2020 Jan 1;2020: [PMID: 32016319]
  7. Sci Total Environ. 2022 Aug 15;834:155175 [PMID: 35421505]
  8. Sci Total Environ. 2020 Nov 25;745:140948 [PMID: 32736102]
  9. Environ Microbiol. 2016 May;18(5):1403-14 [PMID: 26271760]
  10. Mol Ecol. 2016 May;25(10):2286-301 [PMID: 27029537]
  11. PLoS One. 2018 Apr 16;13(4):e0195770 [PMID: 29659610]
  12. Mol Ecol. 2010 Jul;19(14):2908-15 [PMID: 20609083]
  13. Sci Total Environ. 2021 Dec 1;798:149029 [PMID: 34375267]
  14. Chemosphere. 2022 Nov;307(Pt 3):135933 [PMID: 35952789]
  15. PeerJ. 2017 Mar 22;5:e3006 [PMID: 28348924]
  16. Protist. 2010 Jan;161(1):7-34 [PMID: 19674931]
  17. Environ Microbiol. 2020 Jun;22(6):2243-2260 [PMID: 32202362]
  18. Appl Environ Microbiol. 2016 Jul 15;82(15):4757-4766 [PMID: 27235440]
  19. PLoS One. 2014 Feb 07;9(2):e87624 [PMID: 24516555]
  20. Mol Ecol. 2010 Mar;19 Suppl 1:21-31 [PMID: 20331767]
  21. Protist. 2013 Jan;164(1):101-15 [PMID: 22554828]
  22. PLoS One. 2015 Jun 16;10(6):e0127838 [PMID: 26080086]
  23. Sci Total Environ. 2023 May 15;873:162270 [PMID: 36801401]
  24. Front Microbiol. 2022 Aug 08;13:948165 [PMID: 36003939]
  25. Mol Ecol. 2021 Jul;30(13):2959-2968 [PMID: 32979002]
  26. Ecol Appl. 2020 Dec;30(8):e02205 [PMID: 32602216]
  27. Sci Rep. 2016 Aug 22;6:31508 [PMID: 27545322]
  28. Freshw Biol. 2023 Mar 1;68(3):473-486 [PMID: 37538102]
  29. Mol Ecol Resour. 2016 Mar;16(2):402-14 [PMID: 26309223]
  30. Proc Biol Sci. 2021 Nov 24;288(1963):20212168 [PMID: 34814752]
  31. J Appl Phycol. 2020 Oct;32(5):2699-2709 [PMID: 33542589]
  32. PeerJ. 2021 Jul 1;9:e11576 [PMID: 34249491]
  33. PLoS One. 2012;7(8):e42780 [PMID: 22916158]
  34. Harmful Algae. 2022 Mar;113:102187 [PMID: 35287928]
  35. Int J Environ Res Public Health. 2020 Oct 20;17(20): [PMID: 33092111]
  36. Appl Environ Microbiol. 2004 Apr;70(4):2028-37 [PMID: 15066793]
  37. PLoS One. 2011 Feb 10;6(2):e16931 [PMID: 21347329]
  38. PLoS One. 2010 Nov 15;5(11):e13991 [PMID: 21085582]
  39. Sci Rep. 2018 Mar 13;8(1):4457 [PMID: 29535368]
  40. Environ Sci Technol. 2015 Jul 07;49(13):7597-605 [PMID: 26052741]
  41. Sci Rep. 2020 Apr 16;10(1):6519 [PMID: 32300168]
  42. Mol Ecol Resour. 2013 Jul;13(4):607-19 [PMID: 23590277]
  43. Mol Ecol Resour. 2015 Nov;15(6):1435-45 [PMID: 25740460]
  44. J Eukaryot Microbiol. 2011 Nov-Dec;58(6):529-36 [PMID: 22092527]
  45. Microb Ecol. 2019 Jan;77(1):96-109 [PMID: 29882155]
  46. Environ Microbiol. 2018 Feb;20(2):506-520 [PMID: 28984410]
  47. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 [PMID: 20534432]
  48. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  49. PLoS One. 2013;8(1):e53516 [PMID: 23349714]
  50. Water Res. 2022 Oct 15;225:119119 [PMID: 36170769]
  51. Sci Rep. 2021 Aug 9;11(1):16130 [PMID: 34373491]
  52. Mol Ecol Resour. 2023 May;23(4):742-755 [PMID: 36478393]
  53. Sci Rep. 2019 Oct 22;9(1):15116 [PMID: 31641158]
  54. Protist. 2018 Nov;169(5):662-681 [PMID: 30125802]
  55. Mol Ecol Resour. 2015 May;15(3):526-42 [PMID: 25270047]
  56. Dokl Biol Sci. 2022 Dec;507(1):312-326 [PMID: 36781528]
  57. Gene. 1988 Nov 30;71(2):491-9 [PMID: 3224833]
  58. Water Res. 2021 Sep 15;203:117486 [PMID: 34412020]
  59. Mol Ecol Resour. 2017 Nov;17(6):1231-1242 [PMID: 28296259]
  60. FEMS Microbiol Ecol. 2017 Jan;93(1): [PMID: 27677681]
  61. Harmful Algae. 2021 Dec;110:102124 [PMID: 34887004]
  62. An Acad Bras Cienc. 2022 Feb 28;94(suppl 1):e20201736 [PMID: 35239797]
  63. PLoS One. 2009 Jul 27;4(7):e6372 [PMID: 19633714]
  64. Protist. 2011 Jul;162(3):405-22 [PMID: 21239228]
  65. PLoS One. 2014 Sep 29;9(9):e108793 [PMID: 25265556]
  66. Sci Total Environ. 2020 Aug 10;729:138801 [PMID: 32498163]
  67. Microb Ecol. 2017 Nov;74(4):923-936 [PMID: 28540488]
  68. Front Bioinform. 2022 May 26;2:871393 [PMID: 36304302]
  69. FEMS Microbiol Ecol. 2015 Apr;91(4): [PMID: 25764458]
  70. Protist. 2007 Jul;158(3):349-64 [PMID: 17581782]
  71. Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):333-345 [PMID: 24505071]
  72. PLoS One. 2011;6(12):e29013 [PMID: 22216157]
  73. PLoS Biol. 2012;10(11):e1001419 [PMID: 23139639]
  74. Sci Total Environ. 2023 May 1;871:161970 [PMID: 36740061]
  75. PLoS One. 2017 Feb 24;12(2):e0172808 [PMID: 28234997]
  76. Mol Ecol Resour. 2009 May;9 Suppl s1:65-74 [PMID: 21564966]
  77. PLoS One. 2020 Nov 18;15(11):e0242143 [PMID: 33206700]
  78. FEMS Microbiol Ecol. 2017 Aug 1;93(8): [PMID: 28575320]
  79. Sci Rep. 2020 Sep 2;10(1):14431 [PMID: 32879396]
  80. J Phycol. 2021 Oct;57(5):1636-1647 [PMID: 34218435]
  81. Mol Biol Rep. 2022 Jan;49(1):179-188 [PMID: 34686990]
  82. J Eukaryot Microbiol. 2005 Sep-Oct;52(5):399-451 [PMID: 16248873]
  83. Mol Ecol. 2020 Nov;29(22):4258-4264 [PMID: 32966665]
  84. Microorganisms. 2020 Apr 09;8(4): [PMID: 32283732]
  85. J Phycol. 2020 Feb;56(1):11-22 [PMID: 31621078]
  86. J Eukaryot Microbiol. 2012 Sep;59(5):429-93 [PMID: 23020233]
  87. PLoS One. 2014 Apr 22;9(4):e95567 [PMID: 24755918]
  88. Trends Ecol Evol. 2020 Jan;35(1):43-55 [PMID: 31606140]
  89. Mol Ecol. 2021 Jul;30(13):3270-3288 [PMID: 32779312]
  90. Sci Total Environ. 2022 Apr 20;818:151783 [PMID: 34801504]

Grants

  1. 1/CSRD VA

Word Cloud

Created with Highcharts 10.0.0microalgaemarkermarkersdifferentmetabarcodingmethodsfreshwaterusedgeneticstudiesregions18SLstudyingdiversityroutinebiomonitoringactivelymodernresearchlotexperienceaccumulatedalreadymanymethodologicalquestionssolvedinfluencetimesampleconservationDNAextractionbioinformaticalprocessingreproducibilitymethodtestedconfirmedHoweveronemainproblems-choosingstudy-stilllacksclearansweranalyzed70publicationsfoundeukaryoticuse12nuclearITSplastids23S16SpeculiaritiesamplifydifferentlyvariouslevelsefficiencyvariabilitygroupsalgaeV4V9oftenconcentratedespeciallycompareresultsusingmicroscopysummarizedataprimersregionchoiceaffectstaxonomiccompositioncommunityGeneticMarkersMetabarcodingFreshwaterMicroalgae:Reviewbarcodeecologicalassessment

Similar Articles

Cited By