BU-DLNet: Breast Ultrasonography-Based Cancer Detection Using Deep-Learning Network Selection and Feature Optimization.

Amad Zafar, Jawad Tanveer, Muhammad Umair Ali, Seung Won Lee
Author Information
  1. Amad Zafar: Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea. ORCID
  2. Jawad Tanveer: Department of Computer Science and Engineering, Sejong University, Seoul 05006, Republic of Korea.
  3. Muhammad Umair Ali: Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea. ORCID
  4. Seung Won Lee: Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea. ORCID

Abstract

Early detection of breast lesions and distinguishing between malignant and benign lesions are critical for breast cancer (BC) prognosis. Breast ultrasonography (BU) is an important radiological imaging modality for the diagnosis of BC. This study proposes a BU image-based framework for the diagnosis of BC in women. Various pre-trained networks are used to extract the deep features of the BU images. Ten wrapper-based optimization algorithms, including the marine predator algorithm, generalized normal distribution optimization, slime mold algorithm, equilibrium optimizer (EO), manta-ray foraging optimization, atom search optimization, Harris hawks optimization, Henry gas solubility optimization, path finder algorithm, and poor and rich optimization, were employed to compute the optimal subset of deep features using a support vector machine classifier. Furthermore, a network selection algorithm was employed to determine the best pre-trained network. An online BU dataset was used to test the proposed framework. After comprehensive testing and analysis, it was found that the EO algorithm produced the highest classification rate for each pre-trained model. It produced the highest classification accuracy of 96.79%, and it was trained using only a deep feature vector with a size of 562 in the ResNet-50 model. Similarly, the Inception-ResNet-v2 had the second highest classification accuracy of 96.15% using the EO algorithm. Moreover, the results of the proposed framework are compared with those in the literature.

Keywords

References

  1. IEEE J Biomed Health Inform. 2020 Apr;24(4):984-993 [PMID: 31869809]
  2. Sensors (Basel). 2022 Jan 04;22(1): [PMID: 35009911]
  3. Sci Rep. 2019 Apr 23;9(1):6381 [PMID: 31011155]
  4. Diagnostics (Basel). 2022 Jul 24;12(8): [PMID: 35892504]
  5. Comput Methods Programs Biomed. 2021 Sep;208:106221 [PMID: 34144251]
  6. Radiology. 2019 Nov;293(2):246-259 [PMID: 31549948]
  7. IEEE J Biomed Health Inform. 2018 Jul;22(4):1218-1226 [PMID: 28796627]
  8. Comput Methods Programs Biomed. 2020 Jul;190:105360 [PMID: 32007838]
  9. Data Brief. 2019 Nov 21;28:104863 [PMID: 31867417]
  10. Bioengineering (Basel). 2023 Apr 14;10(4): [PMID: 37106662]
  11. J Digit Imaging. 2020 Oct;33(5):1218-1223 [PMID: 32519253]
  12. Radiology. 2004 Dec;233(3):830-49 [PMID: 15486214]
  13. Life (Basel). 2022 Jul 20;12(7): [PMID: 35888172]
  14. JAMA Intern Med. 2019 May 1;179(5):658-667 [PMID: 30882843]
  15. Biomed Res Int. 2018 Jun 21;2018:4605191 [PMID: 30035122]
  16. Comput Biol Med. 2021 Jun;133:104407 [PMID: 33901712]
  17. Arch Comput Methods Eng. 2023;30(5):3133-3172 [PMID: 36855410]
  18. Korean J Radiol. 2020 Jan;21(1):25-32 [PMID: 31920026]
  19. Comput Methods Programs Biomed. 2020 Jul;190:105361 [PMID: 32007839]
  20. Breast. 2022 Aug;64:85-99 [PMID: 35636342]
  21. Comput Med Imaging Graph. 2021 Jan;87:101829 [PMID: 33302247]
  22. Korean J Radiol. 2021 Mar;22(3):297-307 [PMID: 33289355]
  23. J Cancer Res Clin Oncol. 2023 Jun 6;: [PMID: 37278831]
  24. Comput Intell Neurosci. 2022 Aug 4;2022:1465173 [PMID: 35965745]
  25. Breast Cancer. 2007;14(2):229-33 [PMID: 17485910]
  26. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  27. Radiol Clin North Am. 2017 Nov;55(6):1145-1162 [PMID: 28991557]
  28. J Magn Reson Imaging. 2020 May;51(5):1310-1324 [PMID: 31343790]
  29. Comput Intell Neurosci. 2021 Nov 24;2021:2298215 [PMID: 34912443]
  30. Front Oncol. 2020 Jan 31;10:53 [PMID: 32083007]
  31. IEEE/ACM Trans Comput Biol Bioinform. 2021 Jan-Feb;18(1):94-102 [PMID: 32287004]
  32. Clin Breast Cancer. 2014 Aug;14(4):235-40 [PMID: 24703317]
  33. Clin Radiol. 2019 May;74(5):357-366 [PMID: 30898381]
  34. Front Oncol. 2021 Mar 05;11:623506 [PMID: 33747937]
  35. Sensors (Basel). 2023 Apr 03;23(7): [PMID: 37050774]
  36. IEEE Trans Med Imaging. 2023 Mar;42(3):864-879 [PMID: 36327189]

Grants

  1. NRF2021R1I1A2059735/National Research Foundation of Korea

Word Cloud

Created with Highcharts 10.0.0optimizationalgorithmBUbreastBCframeworkpre-traineddeepEOusinghighestclassificationlesionscancerBreastultrasonographydiagnosisusedfeatureswrapper-basedemployedvectornetworkproposedproducedmodelaccuracy96Earlydetectiondistinguishingmalignantbenigncriticalprognosisimportantradiologicalimagingmodalitystudyproposesimage-basedwomenVariousnetworksextractimagesTenalgorithmsincludingmarinepredatorgeneralizednormaldistributionslimemoldequilibriumoptimizermanta-rayforagingatomsearchHarrishawksHenrygassolubilitypathfinderpoorrichcomputeoptimalsubsetsupportmachineclassifierFurthermoreselectiondeterminebestonlinedatasettestcomprehensivetestinganalysisfoundrate79%trainedfeaturesize562ResNet-50SimilarlyInception-ResNet-v2second15%MoreoverresultscomparedliteratureBU-DLNet:Ultrasonography-BasedCancerDetectionUsingDeep-LearningNetworkSelectionFeatureOptimizationimageprocessingmethod

Similar Articles

Cited By