The Outstanding Chemodiversity of Marine-Derived .

Rosario Nicoletti, Rosa Bellavita, Annarita Falanga
Author Information
  1. Rosario Nicoletti: Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy. ORCID
  2. Rosa Bellavita: Department of Pharmacy, University of Naples Federico II, 80100 Napoli, Italy.
  3. Annarita Falanga: Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy. ORCID

Abstract

Fungi in the genus occur in every environment in both terrestrial and marine contexts, where they have been quite frequently found in association with plants and animals. The relationships of symbiotic fungi with their hosts are often mediated by bioactive secondary metabolites, and species represent a prolific source of these compounds. This review highlights the biosynthetic potential of marine-derived strains, using accounts from the literature published since 2016. Over 500 secondary metabolites were extracted from axenic cultures of these isolates and about 45% of them were identified as new products, representing a various assortment of chemical classes such as alkaloids, meroterpenoids, isocoumarins, anthraquinones, xanthones, phenalenones, benzofurans, azaphilones, and other polyketides. This impressive chemodiversity and the broad range of biological properties that have been disclosed in preliminary assays qualify these fungi as a valuable source of products to be exploited for manifold biotechnological applications.

Keywords

References

  1. Fungal Genet Biol. 2000 Aug;30(3):167-71 [PMID: 11035938]
  2. Mar Drugs. 2023 Mar 21;21(3): [PMID: 36976243]
  3. J Cell Physiol. 2022 Jan;237(1):199-238 [PMID: 34431086]
  4. Appl Microbiol. 1971 Oct;22(4):718-20 [PMID: 4331775]
  5. Chin J Nat Med. 2016 Dec;14(12):913-921 [PMID: 28262118]
  6. J Nat Prod. 2021 Oct 22;84(10):2727-2737 [PMID: 34596414]
  7. Molecules. 2019 Apr 30;24(9): [PMID: 31052174]
  8. Bioorg Chem. 2021 Jan;106:104495 [PMID: 33293055]
  9. Chem Biodivers. 2022 Mar;19(3):e202100990 [PMID: 35083850]
  10. Environ Microbiol. 2017 Feb;19(2):803-818 [PMID: 28028923]
  11. Fitoterapia. 2023 Jan;164:105359 [PMID: 36423883]
  12. J Nat Prod. 2017 Dec 22;80(12):3167-3171 [PMID: 29144133]
  13. J Antibiot (Tokyo). 2015 Aug;68(8):530-2 [PMID: 25712393]
  14. Mar Life Sci Technol. 2023 Mar 31;5(2):232-241 [PMID: 37275544]
  15. Med Mycol. 2009;47 Suppl 1:S53-71 [PMID: 18763205]
  16. Nat Prod Res. 2022 Jun;36(11):2713-2721 [PMID: 33926314]
  17. J Asian Nat Prod Res. 2023 Feb;25(2):147-155 [PMID: 35582859]
  18. J Nat Med. 2017 Oct;71(4):776-779 [PMID: 28550651]
  19. Front Microbiol. 2021 Aug 04;12:665702 [PMID: 34421835]
  20. Molecules. 2021 Feb 05;26(4): [PMID: 33562648]
  21. Front Chem. 2018 Sep 04;6:394 [PMID: 30234104]
  22. Chem Biodivers. 2020 Jul;17(7):e2000241 [PMID: 32385896]
  23. Mar Drugs. 2017 May 16;15(5): [PMID: 28509846]
  24. Molecules. 2020 Jan 29;25(3): [PMID: 32013142]
  25. Bioorg Chem. 2021 Oct;115:105269 [PMID: 34426151]
  26. Mar Drugs. 2016 Feb 18;14(2): [PMID: 26901206]
  27. PLoS One. 2015 Apr 22;10(4):e0122629 [PMID: 25902139]
  28. Pharmacognosy Res. 2017 Dec;9(Suppl 1):S92-S98 [PMID: 29333049]
  29. 3 Biotech. 2022 Aug;12(8):161 [PMID: 35818470]
  30. Biochem J. 1964 Oct;93(1):92-7 [PMID: 5838107]
  31. Eur J Med Chem. 2021 Jan 1;209:112860 [PMID: 33032085]
  32. Front Microbiol. 2021 Dec 22;12:766440 [PMID: 35003004]
  33. Molecules. 2018 Apr 19;23(4): [PMID: 29671776]
  34. Mar Drugs. 2018 May 02;16(5): [PMID: 29724060]
  35. Microorganisms. 2020 Dec 03;8(12): [PMID: 33287158]
  36. Planta Med. 2016 Jun;82(9-10):888-96 [PMID: 27054912]
  37. Cell Prolif. 2009 Aug;42(4):541-53 [PMID: 19486013]
  38. Prikl Biokhim Mikrobiol. 2005 Sep-Oct;41(5):573-7 [PMID: 16240659]
  39. Stud Mycol. 2014 Jun;78:175-341 [PMID: 25492983]
  40. Org Lett. 2019 Aug 16;21(16):6539-6542 [PMID: 31364857]
  41. Eur J Med Chem. 2018 Oct 5;158:548-558 [PMID: 30243156]
  42. Mar Drugs. 2017 Nov 14;15(11): [PMID: 29135916]
  43. Altern Lab Anim. 2002 Jan-Feb;30(1):69-75 [PMID: 11827571]
  44. Molecules. 2022 Sep 06;27(18): [PMID: 36144502]
  45. J Nat Prod. 2017 Jan 27;80(1):162-168 [PMID: 27992187]
  46. Mar Drugs. 2019 Sep 02;17(9): [PMID: 31480659]
  47. Nat Prod Res. 2023 Oct-Nov;37(19):3283-3289 [PMID: 35476591]
  48. Mar Drugs. 2019 Oct 23;17(11): [PMID: 31652878]
  49. Nat Prod Res. 2017 Oct;31(19):2218-2222 [PMID: 28299980]
  50. J Nat Prod. 2021 Aug 27;84(8):2385-2389 [PMID: 34351742]
  51. J Fungi (Basel). 2017 Jun 28;3(3): [PMID: 29371552]
  52. J Org Chem. 2021 Sep 17;86(18):12831-12839 [PMID: 34477382]
  53. J Org Chem. 2003 Jun 13;68(12):4966-9 [PMID: 12790612]
  54. Nat Prod Rep. 2022 Apr 20;39(4):784-813 [PMID: 34816854]
  55. Front Microbiol. 2015 Jan 12;5:773 [PMID: 25628613]
  56. Org Lett. 2017 Apr 21;19(8):2046-2049 [PMID: 28383269]
  57. Nat Prod Res. 2019 Jan;33(1):89-94 [PMID: 29397772]
  58. Fitoterapia. 2019 Jul;136:104177 [PMID: 31128244]
  59. Microorganisms. 2021 Dec 26;10(1): [PMID: 35056494]
  60. Cell Prolif. 2011 Oct;44(5):401-9 [PMID: 21951283]
  61. J Nat Prod. 2007 Mar;70(3):353-60 [PMID: 17291041]
  62. J Nat Prod. 2010 May 28;73(5):905-10 [PMID: 20408555]
  63. Magn Reson Chem. 2015 Oct;53(10):866-71 [PMID: 26255790]
  64. Int J Mol Sci. 2009 Mar 30;10(4):1430-1444 [PMID: 19468317]
  65. Appl Microbiol Biotechnol. 2015 Oct;99(19):7859-77 [PMID: 26243055]
  66. Annu Rev Phytopathol. 1990;28:59-72 [PMID: 20540607]
  67. Cell Prolif. 2004 Dec;37(6):413-26 [PMID: 15548174]
  68. Nat Prod Res. 2019 Oct;33(20):2977-2981 [PMID: 30417660]
  69. Mar Drugs. 2016 Nov 25;14(12): [PMID: 27897975]
  70. Nat Prod Res. 2017 Nov;31(22):2593-2598 [PMID: 28147702]
  71. Arch Pharm Res. 2016 Jun;39(6):762-70 [PMID: 27129688]
  72. Antibiotics (Basel). 2022 Nov 11;11(11): [PMID: 36421238]
  73. Nat Prod Res. 2022 Jan;36(1):460-465 [PMID: 34967248]
  74. Fitoterapia. 2017 Oct;122:1-6 [PMID: 28807715]
  75. Toxins (Basel). 2022 Jul 08;14(7): [PMID: 35878204]
  76. Appl Microbiol Biotechnol. 2022 Apr;106(8):2927-2935 [PMID: 35416486]
  77. Cell Prolif. 2010 Apr;43(2):114-23 [PMID: 20447056]
  78. Nat Prod Res. 2021 Dec;35(24):5778-5785 [PMID: 33107331]
  79. Annu Rev Phytopathol. 2000 Sep;38:325-363 [PMID: 11701846]
  80. Pharmaceutics. 2022 Feb 21;14(2): [PMID: 35214187]
  81. Molecules. 2015 Apr 30;20(5):7940-50 [PMID: 25942374]
  82. Front Microbiol. 2018 Aug 03;9:1777 [PMID: 30123207]
  83. Nat Prod Res. 2018 Jul;32(13):1573-1577 [PMID: 29034745]
  84. Mar Drugs. 2019 Sep 29;17(10): [PMID: 31569458]
  85. Front Fungal Biol. 2021 Apr 14;2:626904 [PMID: 37744136]
  86. Phytochemistry. 2018 Feb;146:8-15 [PMID: 29197643]
  87. Molecules. 2020 Jan 17;25(2): [PMID: 31963586]
  88. Org Lett. 2008 Nov 6;10(21):4863-6 [PMID: 18844365]
  89. Org Lett. 2022 Jun 10;24(22):3993-3997 [PMID: 35616425]
  90. Nat Prod Res. 2022 Mar;36(5):1260-1265 [PMID: 33459051]
  91. J Nat Prod. 1999 Sep;62(9):1328-9 [PMID: 10514327]
  92. J Fungi (Basel). 2017 Jul 02;3(3): [PMID: 29371553]
  93. J Nat Prod. 2022 Nov 25;85(11):2620-2625 [PMID: 36318598]
  94. Nat Rev Microbiol. 2018 Feb;16(2):67-79 [PMID: 29176581]
  95. Microbiol Res. 2021 Oct;251:126841 [PMID: 34385083]
  96. Nat Prod Res. 2024 Jan-Feb;38(2):320-326 [PMID: 36093561]
  97. J Nat Prod. 2021 Dec 24;84(12):3011-3019 [PMID: 34842422]
  98. Mar Drugs. 2022 May 27;20(6): [PMID: 35736164]
  99. Mar Drugs. 2022 Aug 18;20(8): [PMID: 36005532]
  100. J Nat Prod. 1999 Apr;62(4):580-3 [PMID: 10217713]
  101. Molecules. 2013 May 21;18(5):5891-935 [PMID: 23698046]
  102. Front Pharmacol. 2021 Apr 26;12:542891 [PMID: 33981211]
  103. J Asian Nat Prod Res. 2015 May;17(5):567-75 [PMID: 25981163]
  104. Mar Drugs. 2021 Dec 29;20(1): [PMID: 35049889]
  105. Stud Mycol. 2020 Jun 27;95:5-169 [PMID: 32855739]
  106. RSC Adv. 2023 Mar 10;13(12):8049-8089 [PMID: 36909763]
  107. Bioorg Chem. 2020 Jan;94:103362 [PMID: 31668463]
  108. J Nat Prod. 2017 Apr 28;80(4):1039-1047 [PMID: 28212032]
  109. Mar Drugs. 2016 Dec 07;14(12): [PMID: 27941601]
  110. Mar Drugs. 2018 Jan 06;16(1): [PMID: 29316607]
  111. Antibiotics (Basel). 2022 Feb 10;11(2): [PMID: 35203824]
  112. Mar Drugs. 2022 Jan 18;20(2): [PMID: 35200609]
  113. Helv Chim Acta. 1971;54(4):1178-90 [PMID: 5095217]
  114. Curr Biol. 2019 Mar 18;29(6):R191-R195 [PMID: 30889385]
  115. Front Microbiol. 2020 Nov 13;11:570855 [PMID: 33281765]
  116. Invest New Drugs. 2012 Aug;30(4):1343-51 [PMID: 21656164]
  117. Microorganisms. 2022 Jan 15;10(1): [PMID: 35056637]
  118. J Fungi (Basel). 2021 Dec 31;8(1): [PMID: 35049976]
  119. Nat Prod Res. 2023 Oct-Nov;37(20):3434-3442 [PMID: 35609143]
  120. Nat Prod Bioprospect. 2016 Feb;6(1):1-24 [PMID: 26746215]
  121. Curr Med Chem. 2013;20(36):4481-507 [PMID: 23834190]
  122. J Nat Prod. 2020 Aug 28;83(8):2528-2536 [PMID: 32813522]

MeSH Term

Animals
Talaromyces
Biological Products
Polyketides
Biotechnology
Isocoumarins

Chemicals

Biological Products
Polyketides
Isocoumarins

Word Cloud

Created with Highcharts 10.0.0fungibioactivesecondarymetabolitessourcecompoundsmarine-derivedproductsbiotechnologicalapplicationsFungigenusoccureveryenvironmentterrestrialmarinecontextsquitefrequentlyfoundassociationplantsanimalsrelationshipssymbiotichostsoftenmediatedspeciesrepresentprolificreviewhighlightsbiosyntheticpotentialstrainsusingaccountsliteraturepublishedsince2016500extractedaxenicculturesisolates45%identifiednewrepresentingvariousassortmentchemicalclassesalkaloidsmeroterpenoidsisocoumarinsanthraquinonesxanthonesphenalenonesbenzofuransazaphilonespolyketidesimpressivechemodiversitybroadrangebiologicalpropertiesdisclosedpreliminaryassaysqualifyvaluableexploitedmanifoldOutstandingChemodiversityMarine-DerivedPenicilliumsubgenusBiverticilliumTalaromyceschemotaxonomy

Similar Articles

Cited By