Gear Shifting in Biological Energy Transduction.

Yanfei Zhang, Hans V Westerhoff
Author Information
  1. Yanfei Zhang: Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
  2. Hans V Westerhoff: Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands. ORCID

Abstract

Confronted with thermodynamically adverse output processes, free-energy transducers may shift to lower gears, thereby reducing output per unit input. This option is well known for inanimate machines such as automobiles, but unappreciated in biology. The present study extends existing non-equilibrium thermodynamic principles to underpin biological gear shifting and identify possible mechanisms. It shows that gear shifting differs from altering the degree of coupling and that living systems may use it to optimize their performance: microbial growth is ultimately powered by the Gibbs energy of catabolism, which is partially transformed into Gibbs energy ('output force') in the ATP that is produced. If this output force is high, the cell may turn to a catabolic pathway with a lower ATP stoichiometry. Notwithstanding the reduced stoichiometry, the ATP synthesis flux may then actually increase as compared to that in a system without gear shift, in which growth might come to a halt. A 'variomatic' gear switching strategy should be optimal, explaining why organisms avail themselves of multiple catabolic pathways, as these enable them to shift gears when the growing gets tough.

Keywords

References

  1. Free Radic Biol Med. 2008 Mar 15;44(6):921-37 [PMID: 18155672]
  2. PLoS Comput Biol. 2017 Sep 28;13(9):e1005758 [PMID: 28957320]
  3. Comput Chem. 2001 Jul;25(4):369-91 [PMID: 11459352]
  4. Proc Natl Acad Sci U S A. 1974 Jan;71(1):192-6 [PMID: 16592132]
  5. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3554-8 [PMID: 6267598]
  6. Eur J Biochem. 1980 Aug;109(1):269-83 [PMID: 7408881]
  7. J Inherit Metab Dis. 2023 Jul;46(4):573-585 [PMID: 36880400]
  8. J Mol Biol. 2008 Mar 7;376(5):1260-71 [PMID: 18234227]
  9. Eur J Biochem. 2001 Apr;268(8):2486-97 [PMID: 11298768]
  10. J Theor Biol. 1998 Aug 21;193(4):593-9 [PMID: 9745755]
  11. Biochem Soc Trans. 2017 Jun 15;45(3):635-652 [PMID: 28620026]
  12. BMC Bioinformatics. 2000;1:1 [PMID: 11001586]
  13. Biochemistry. 1981 Sep 1;20(18):5114-23 [PMID: 6271177]
  14. J Exp Bot. 2012 Mar;63(6):2275-92 [PMID: 22419742]
  15. Nat Biotechnol. 2008 Oct;26(10):1155-60 [PMID: 18846089]
  16. Proc Natl Acad Sci U S A. 1983 Jan;80(1):305-9 [PMID: 6572006]
  17. Biophys J. 1973 Jun;13(6):503-11 [PMID: 4714445]
  18. Theor Biol Med Model. 2007 Jul 30;4:27 [PMID: 17663761]
  19. Biochim Biophys Acta. 2011 Dec;1807(12):1507-38 [PMID: 22082452]
  20. FEBS J. 2015 Apr;282(8):1481-511 [PMID: 25693925]
  21. Philos Trans R Soc Lond B Biol Sci. 2021 Jan 4;376(1815):20190624 [PMID: 33190604]
  22. Nat Biotechnol. 2001 Feb;19(2):125-30 [PMID: 11175725]
  23. Biochim Biophys Acta. 1980 Jul 8;591(2):488-93 [PMID: 7397133]
  24. Biochem Mol Biol Int. 1999 Mar;47(3):443-53 [PMID: 10204081]
  25. Appl Environ Microbiol. 1998 Nov;64(11):4226-33 [PMID: 9797269]
  26. J Bacteriol. 2009 Sep;191(17):5510-7 [PMID: 19542282]
  27. Proc Natl Acad Sci U S A. 1974 Jan;71(1):197-9 [PMID: 16592133]
  28. Front Microbiol. 2017 Dec 12;8:2474 [PMID: 29312184]
  29. FEBS Lett. 2022 Dec;596(24):3203-3210 [PMID: 36008883]
  30. Biophys J. 1991 Oct;60(4):794-803 [PMID: 1742453]
  31. Int J Mol Sci. 2017 Apr 20;18(4): [PMID: 28425930]

Word Cloud

Created with Highcharts 10.0.0gearmayATPoutputshiftshiftinggrowthstoichiometrylowergearsnon-equilibriumGibbsenergycellcatabolicsynthesisthermodynamicsConfrontedthermodynamicallyadverseprocessesfree-energytransducerstherebyreducingperunitinputoptionwellknowninanimatemachinesautomobilesunappreciatedbiologypresentstudyextendsexistingthermodynamicprinciplesunderpinbiologicalidentifypossiblemechanismsshowsdiffersalteringdegreecouplinglivingsystemsuseoptimizeperformance:microbialultimatelypoweredcatabolismpartiallytransformed'outputforce'producedforcehighturnpathwayNotwithstandingreducedfluxactuallyincreasecomparedsystemwithoutmightcomehalt'variomatic'switchingstrategyoptimalexplainingorganismsavailmultiplepathwaysenablegrowinggetstoughGearShiftingBiologicalEnergyTransductionphenomenological

Similar Articles

Cited By