Regulation of , the Magnesium, Nickel, Cobalt Transporter, and Its Role in the Virulence of the Soft Rot Pathogen, Strain Ecc71.

Caleb M Kersey, C Korsi Dumenyo
Author Information
  1. Caleb M Kersey: Department of Biological, Physical and Human Sciences, Freed-Hardeman University, Henderson, TN 38340, USA.
  2. C Korsi Dumenyo: Departments of Plant Science, Tennessee State University, Campus Box 9543, Nashville, TN 37209, USA. ORCID

Abstract

(formally ) causes disease on diverse plant species by synthesizing and secreting copious amount of plant-cell-wall-degrading exoenzymes including pectate lyases, polygalacturonases, cellulases, and proteases. Exoenzyme production and virulence are controlled by many factors of bacterial, host, and environmental origin. The ion channel forming the magnesium, nickel, and cobalt transporter CorA is required for exoenzyme production and full virulence in strain Ecc71. We investigated CorA's role as a virulence factor and its expression in . . Inhibiting the transport function of CorA by growing a CorA strain in the presence of specific CorA inhibitor, cobalt (III) hexaammine (Co (III)Hex), has no effect on exoenzyme production. Transcription of , encoding a pectate lyase isozyme, is decreased in the absence of CorA, suggesting that CorA influences exoenzyme production at the transcriptional level, although apparently not through its transport function. CorA and CorA strains grown in the presence of Co (III)Hex transcriptionally express at higher levels than CorA strains in the absence of an inhibitor, suggesting the transport role of contributes to autorepression. The expression of is about four-fold lower in HrpL strains lacking the -specific extracytoplasmic sigma factor. The promoter region contains a sequence with a high similarity to the consensus Hrp box, suggesting that is part of Hrp regulon. Our data suggest a complex role, possibly requiring the physical presence of the CorA protein in the virulence of the strain Ecc71.

Keywords

References

  1. J Bacteriol. 1992 Jun;174(12):3843-9 [PMID: 1597408]
  2. J Bacteriol. 1995 Mar;177(6):1638-40 [PMID: 7883724]
  3. Biochim Biophys Acta. 2008 Sep;1778(9):1930-45 [PMID: 17673165]
  4. J Bacteriol. 1985 Oct;164(1):390-6 [PMID: 4044526]
  5. Mol Plant Microbe Interact. 2006 Jun;19(6):607-13 [PMID: 16776294]
  6. Mol Plant Microbe Interact. 2006 Nov;19(11):1193-206 [PMID: 17073302]
  7. J Bacteriol. 2008 Oct;190(19):6509-16 [PMID: 18676666]
  8. PLoS One. 2010 Oct 19;5(10):e13472 [PMID: 20976052]
  9. Mol Plant Microbe Interact. 2004 Nov;17(11):1250-8 [PMID: 15553250]
  10. Mol Plant Microbe Interact. 2005 Feb;18(2):150-7 [PMID: 15720084]
  11. J Bacteriol. 1993 Aug;175(15):4859-69 [PMID: 8335641]
  12. Mol Plant Pathol. 2012 Jan;13(1):58-71 [PMID: 21726393]
  13. Mol Plant Microbe Interact. 2008 May;21(5):547-54 [PMID: 18393614]
  14. Adv Microb Physiol. 2002;46:47-110 [PMID: 12073657]
  15. Proc Natl Acad Sci U S A. 2017 May 30;114(22):5689-5694 [PMID: 28512220]
  16. Front Plant Sci. 2013 Jun 11;4:191 [PMID: 23781227]
  17. Annu Rev Phytopathol. 2018 Aug 25;56:269-288 [PMID: 29958075]
  18. Front Biosci. 2006 Sep 01;11:3149-63 [PMID: 16720382]
  19. J Bacteriol. 1995 Nov;177(21):6201-10 [PMID: 7592386]
  20. Mol Plant Microbe Interact. 1997 May;10(4):462-71 [PMID: 9150595]
  21. Front Biosci. 2000 Aug 01;5:D720-34 [PMID: 10922296]
  22. J Bacteriol. 1994 Feb;176(4):1025-36 [PMID: 8106313]
  23. Syst Appl Microbiol. 1998 Aug;21(3):384-97 [PMID: 9779605]
  24. PLoS One. 2013 Jun 03;8(6):e65534 [PMID: 23755246]
  25. Mol Plant Microbe Interact. 2001 Aug;14(8):962-8 [PMID: 11497468]
  26. Mol Plant Pathol. 2002 Sep 1;3(5):359-70 [PMID: 20569343]
  27. Appl Environ Microbiol. 1995 May;61(5):1959-67 [PMID: 7646031]
  28. Microbiol Mol Biol Rev. 2005 Dec;69(4):527-43 [PMID: 16339734]
  29. J Bacteriol. 2008 Jul;190(13):4610-23 [PMID: 18441056]
  30. Mol Microbiol. 2001 Sep;41(5):1113-23 [PMID: 11555291]
  31. Annu Rev Phytopathol. 2021 Aug 25;59:153-190 [PMID: 33951403]
  32. J Bacteriol. 2005 Jul;187(14):4792-803 [PMID: 15995194]
  33. Mol Plant Microbe Interact. 2002 Sep;15(9):971-80 [PMID: 12236604]
  34. Appl Environ Microbiol. 1994 Jul;60(7):2545-52 [PMID: 8074530]
  35. J Biol Chem. 2000 Jun 2;275(22):16767-73 [PMID: 10748031]
  36. J Bacteriol. 2008 Oct;190(19):6517-23 [PMID: 18676664]
  37. Res Microbiol. 1997 Jul-Aug;148(6):536-51 [PMID: 9765840]
  38. Mol Microbiol. 2019 Jan;111(1):131-144 [PMID: 30276893]
  39. Mol Genet Genomics. 2003 Nov;270(3):263-72 [PMID: 14576934]
  40. Int J Syst Evol Microbiol. 2019 Oct;69(10):3207-3216 [PMID: 31343401]
  41. J Bacteriol. 1999 Oct;181(19):6042-52 [PMID: 10498717]
  42. Environ Microbiol. 2000 Apr;2(2):203-15 [PMID: 11220306]
  43. J Bacteriol. 1993 Sep;175(18):5916-24 [PMID: 8376338]
  44. J Bacteriol. 1987 May;169(5):1972-8 [PMID: 3571157]
  45. Gene. 1988 Oct 15;70(1):191-7 [PMID: 2853689]
  46. Mol Plant Microbe Interact. 1998 Apr;11(4):270-6 [PMID: 9530868]
  47. Plant Mol Biol. 1987 Jan;9(1):27-39 [PMID: 24276795]
  48. J Bacteriol. 2003 Oct;185(19):5772-8 [PMID: 13129948]
  49. Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):2275-80 [PMID: 11854524]
  50. Phytopathology. 2007 Sep;97(9):1150-63 [PMID: 18944180]
  51. Mol Plant Microbe Interact. 2005 Jul;18(7):634-43 [PMID: 16042009]
  52. Gene. 2000 Jan 4;241(1):185-91 [PMID: 10607913]
  53. Mol Microbiol. 2001 Sep;41(5):1125-32 [PMID: 11555292]

Grants

  1. TENX-1828-GFSH/National Institute of Food and Agriculture

Word Cloud

Created with Highcharts 10.0.0CorAproductionvirulencetransportexoenzymestrainEcc71rolepresenceIIIsuggestingstrainspectatemagnesiumcobaltfactorexpressionfunctioninhibitorCoHexabsenceHrpLHrpformallycausesdiseasediverseplantspeciessynthesizingsecretingcopiousamountplant-cell-wall-degradingexoenzymesincludinglyasespolygalacturonasescellulasesproteasesExoenzymecontrolledmanyfactorsbacterialhostenvironmentaloriginionchannelformingnickeltransporterrequiredfullinvestigatedCorA'sInhibitinggrowingspecifichexaammineeffectTranscriptionencodinglyaseisozymedecreasedinfluencestranscriptionallevelalthoughapparentlygrowntranscriptionallyexpresshigherlevelscontributesautorepressionfour-foldlowerlacking-specificextracytoplasmicsigmapromoterregioncontainssequencehighsimilarityconsensusboxpartregulondatasuggestcomplexpossiblyrequiringphysicalproteinRegulationMagnesiumNickelCobaltTransporterRoleVirulenceSoftRotPathogenStrainPectobacteriumsoftrot

Similar Articles

Cited By