Time-Frequency Signatures of Electronic Coherence of Colloidal CdSe Quantum Dot Dimer Assemblies Probed at Room Temperature by Two-Dimensional Electronic Spectroscopy.

James R Hamilton, Edoardo Amarotti, Carlo N Dibenedetto, Marinella Striccoli, Raphael D Levine, Elisabetta Collini, Francoise Remacle
Author Information
  1. James R Hamilton: Department of Theoretical Physical Chemistry, University of Liège, B4000 Liège, Belgium.
  2. Edoardo Amarotti: Department of Chemical Sciences, University of Padova, 35131 Padova, Italy. ORCID
  3. Carlo N Dibenedetto: CNR-IPCF SS Bari, c/o Chemistry Department, University of Bari Aldo Moro, 70126 Bari, Italy. ORCID
  4. Marinella Striccoli: CNR-IPCF SS Bari, c/o Chemistry Department, University of Bari Aldo Moro, 70126 Bari, Italy. ORCID
  5. Raphael D Levine: The Fritz Haber Research Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
  6. Elisabetta Collini: Department of Chemical Sciences, University of Padova, 35131 Padova, Italy. ORCID
  7. Francoise Remacle: Department of Theoretical Physical Chemistry, University of Liège, B4000 Liège, Belgium. ORCID

Abstract

Electronic coherence signatures can be directly identified in the time-frequency maps measured in two-dimensional electronic spectroscopy (2DES). Here, we demonstrate the theory and discuss the advantages of this approach via the detailed application to the fast-femtosecond beatings of a wide variety of electronic coherences in ensemble dimers of quantum dots (QDs), assembled from QDs of 3 nm in diameter, with 8% size dispersion in diameter. The observed and computed results can be consistently characterized directly in the time-frequency domain by probing the polarization in the 2DES setup. The experimental and computed time-frequency maps are found in very good agreement, and several electronic coherences are characterized at room temperature in solution, before the extensive dephasing due to the size dispersion begins. As compared to the frequency-frequency maps that are commonly used in 2DES, the time-frequency maps allow exploiting electronic coherences without additional post-processing and with fewer 2DES measurements. Towards quantum technology applications, we also report on the modeling of the time-frequency photocurrent response of these electronic coherences, which paves the way to integrating QD devices with classical architectures, thereby enhancing the quantum advantage of such technologies for parallel information processing at room temperature.

Keywords

References

  1. Nat Commun. 2020 Jan 30;11(1):617 [PMID: 32001688]
  2. ACS Nano. 2017 Dec 26;11(12):12174-12184 [PMID: 29178801]
  3. J Chem Phys. 2010 Sep 7;133(9):094505 [PMID: 20831322]
  4. J Phys Chem Lett. 2018 Oct 18;9(20):6077-6081 [PMID: 30273488]
  5. Chem Rev. 2021 Mar 10;121(5):3186-3233 [PMID: 33372773]
  6. Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2220069120 [PMID: 36897984]
  7. J Phys Chem Lett. 2016 Jan 21;7(2):250-8 [PMID: 26711855]
  8. J Phys Chem Lett. 2021 Apr 29;12(16):3983-3988 [PMID: 33877838]
  9. Phys Rev B Condens Matter. 1996 Jun 15;53(24):16338-16346 [PMID: 9983472]
  10. Nat Commun. 2014 Dec 18;5:5869 [PMID: 25519819]
  11. J Chem Phys. 2021 Jan 7;154(1):014301 [PMID: 33412883]
  12. Phys Chem Chem Phys. 2016 Oct 19;18(41):28797-28801 [PMID: 27722475]
  13. J Phys Chem Lett. 2020 Sep 3;11(17):6990-6995 [PMID: 32787197]
  14. Phys Chem Chem Phys. 2018 Jul 11;20(27):18176-18183 [PMID: 29961782]
  15. Acc Chem Res. 2021 Mar 2;54(5):1178-1188 [PMID: 33459013]
  16. Nano Lett. 2010 Aug 11;10(8):2849-56 [PMID: 20698598]
  17. J Phys Chem B. 2009 Dec 24;113(51):16291-5 [PMID: 20014871]
  18. Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21022-21030 [PMID: 32817545]
  19. J Phys Chem Lett. 2018 Apr 19;9(8):1964-1969 [PMID: 29608071]
  20. Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17183-8 [PMID: 24043793]
  21. J Phys Chem Lett. 2010 Dec 2;1(23):3366-3370 [PMID: 23828724]
  22. Phys Chem Chem Phys. 2022 Nov 23;24(45):27645-27659 [PMID: 36349664]
  23. Biochim Biophys Acta Bioenerg. 2019 Apr 1;1860(4):271-285 [PMID: 30579778]
  24. Opt Express. 2017 Feb 20;25(4):3259-3267 [PMID: 28241542]
  25. Phys Rev B Condens Matter. 1996 Aug 15;54(7):4843-4856 [PMID: 9986445]
  26. Science. 2009 May 29;324(5931):1169-73 [PMID: 19478176]
  27. J Phys Chem C Nanomater Interfaces. 2021 Jun 24;125(24):13096-13108 [PMID: 34276867]
  28. Opt Express. 2013 Nov 18;21(23):28617-27 [PMID: 24514373]
  29. Acc Chem Res. 2009 Sep 15;42(9):1375-84 [PMID: 19552412]

Word Cloud

Created with Highcharts 10.0.0electronicquantumtime-frequencycoherencesmaps2DESElectronicspectroscopydimerscandirectlyQDsdiametersizedispersioncomputedcharacterizedroomtemperaturephotocurrenttechnologiesCdSedotcoherencesignaturesidentifiedmeasuredtwo-dimensionaldemonstratetheorydiscussadvantagesapproachviadetailedapplicationfast-femtosecondbeatingswidevarietyensembledotsassembled3nm8%observedresultsconsistentlydomainprobingpolarizationsetupexperimentalfoundgoodagreementseveralsolutionextensivedephasingduebeginscomparedfrequency-frequencycommonlyusedallowexploitingwithoutadditionalpost-processingfewermeasurementsTowardstechnologyapplicationsalsoreportmodelingresponsepaveswayintegratingQDdevicesclassicalarchitecturestherebyenhancingadvantageparallelinformationprocessingTime-FrequencySignaturesCoherenceColloidalQuantumDotDimerAssembliesProbedRoomTemperatureTwo-DimensionalSpectroscopy2Dfemtosecondaction

Similar Articles

Cited By (2)