Application of Ligand- and Structure-Based Prediction Models for the Design of Alkylhydrazide-Based HDAC3 Inhibitors as Novel Anti-Cancer Compounds.

Emre F Bülbül, Dina Robaa, Ping Sun, Fereshteh Mahmoudi, Jelena Melesina, Matthes Zessin, Mike Schutkowski, Wolfgang Sippl
Author Information
  1. Emre F Bülbül: Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany. ORCID
  2. Dina Robaa: Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany.
  3. Ping Sun: Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany. ORCID
  4. Fereshteh Mahmoudi: Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany.
  5. Jelena Melesina: Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany.
  6. Matthes Zessin: Department of Enzymology, Institute of Biotechnology, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany.
  7. Mike Schutkowski: Department of Enzymology, Institute of Biotechnology, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany.
  8. Wolfgang Sippl: Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle (Saale), Germany. ORCID

Abstract

Histone deacetylases (HDAC) represent promising epigenetic targets for several diseases including different cancer types. The HDAC inhibitors approved to date are pan-HDAC inhibitors and most show a poor selectivity profile, side effects, and in particular hydroxamic-acid-based inhibitors lack good pharmacokinetic profiles. Therefore, the development of isoform-selective non-hydroxamic acid HDAC inhibitors is a highly regarded field in medicinal chemistry. In this study, we analyzed different ligand-based and structure-based drug design techniques to predict the binding mode and inhibitory activity of recently developed alkylhydrazide HDAC inhibitors. Alkylhydrazides have recently attracted more attention as they have shown promising effects in various cancer cell lines. In this work, pharmacophore models and atom-based quantitative structure-activity relationship (QSAR) models were generated and evaluated. The binding mode of the studied compounds was determined using molecular docking as well as molecular dynamics simulations and compared with known crystal structures. Calculated free energies of binding were also considered to generate QSAR models. The created models show a good explanation of in vitro data and were used to develop novel HDAC3 inhibitors.

Keywords

References

  1. Cell. 1997 May 2;89(3):349-56 [PMID: 9150134]
  2. Molecules. 2022 Apr 14;27(8): [PMID: 35458724]
  3. J Med Chem. 2018 Mar 22;61(6):2589-2603 [PMID: 29499113]
  4. J Comput Chem. 2003 Dec;24(16):1999-2012 [PMID: 14531054]
  5. Cell. 2007 Feb 23;128(4):693-705 [PMID: 17320507]
  6. Proteins. 2004 May 1;55(2):383-94 [PMID: 15048829]
  7. Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):E11148-E11157 [PMID: 30397132]
  8. J Comput Chem. 2005 Dec;26(16):1668-88 [PMID: 16200636]
  9. J Comput Chem. 2004 Jul 15;25(9):1157-74 [PMID: 15116359]
  10. J Med Chem. 2022 Dec 22;65(24):16313-16337 [PMID: 36449385]
  11. Bioorg Med Chem. 2016 Sep 15;24(18):4008-4015 [PMID: 27377864]
  12. Chem Biol. 2002 Jan;9(1):3-16 [PMID: 11841934]
  13. Molecules. 2018 Mar 02;23(3): [PMID: 29498707]
  14. Nat Genet. 2005 Apr;37(4):391-400 [PMID: 15765097]
  15. Nat Struct Mol Biol. 2011 Feb;18(2):177-84 [PMID: 21240272]
  16. J Med Chem. 2021 Jul 8;64(13):8827-8869 [PMID: 34161101]
  17. Cold Spring Harb Perspect Biol. 2014 Apr 01;6(4):a018713 [PMID: 24691964]
  18. J Med Chem. 2013 Dec 27;56(24):9934-54 [PMID: 24261862]
  19. Nat Rev Drug Discov. 2006 Sep;5(9):769-84 [PMID: 16955068]
  20. J Med Chem. 2020 May 28;63(10):5501-5525 [PMID: 32321249]
  21. J Cell Mol Med. 2009 Sep;13(9B):2990-3005 [PMID: 19583816]
  22. Eur J Med Chem. 2020 Apr 15;192:112171 [PMID: 32163814]
  23. J Med Chem. 2004 Jun 17;47(13):3409-17 [PMID: 15189037]
  24. J Med Chem. 2018 Nov 21;61(22):10000-10016 [PMID: 30347148]
  25. J Biol Chem. 2000 May 19;275(20):15254-64 [PMID: 10748112]
  26. J Chem Theory Comput. 2016 Jan 12;12(1):281-96 [PMID: 26584231]
  27. Nature. 2012 Jan 09;481(7381):335-40 [PMID: 22230954]
  28. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  29. Cell Rep. 2021 Dec 21;37(12):110129 [PMID: 34936867]
  30. ACS Med Chem Lett. 2015 Dec 10;7(1):34-9 [PMID: 26819662]
  31. Biochimie. 2015 Sep;116:61-9 [PMID: 26116886]
  32. ACS Med Chem Lett. 2020 Oct 13;11(12):2476-2483 [PMID: 33335670]
  33. J Comput Aided Mol Des. 2006 Oct-Nov;20(10-11):647-71 [PMID: 17124629]
  34. J Comput Chem. 2002 Dec;23(16):1623-41 [PMID: 12395429]
  35. Expert Opin Drug Discov. 2015 May;10(5):449-61 [PMID: 25835573]
  36. J Med Chem. 2022 Jan 13;65(1):285-302 [PMID: 34942071]
  37. Chem Commun (Camb). 2020 Aug 25;56(68):9866-9869 [PMID: 32840532]
  38. J Mol Biol. 2004 Apr 16;338(1):17-31 [PMID: 15050820]
  39. Bioorg Med Chem Lett. 2019 Aug 15;29(16):2369-2374 [PMID: 31201063]
  40. Int J Mol Sci. 2021 Dec 29;23(1): [PMID: 35008795]
  41. J Med Chem. 1999 Nov 4;42(22):4669-79 [PMID: 10579829]
  42. J Comput Chem. 2004 Jan 30;25(2):265-84 [PMID: 14648625]
  43. Exp Mol Med. 2020 Feb;52(2):204-212 [PMID: 32071378]
  44. J Phys Chem B. 2015 Jan 22;119(3):883-95 [PMID: 25145273]
  45. Mol Inform. 2010 Jul 12;29(6-7):476-88 [PMID: 27463326]
  46. Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150202 [PMID: 26953178]
  47. Proteins. 2004 May 15;55(3):620-34 [PMID: 15103626]
  48. J Chem Theory Comput. 2012 Sep 11;8(9):3314-21 [PMID: 26605738]
  49. Aging Dis. 2022 Jun 1;13(3):773-786 [PMID: 35656103]
  50. Nat Commun. 2020 Jun 26;11(1):3252 [PMID: 32591534]
  51. ACS Med Chem Lett. 2020 Jun 22;11(7):1476-1483 [PMID: 32676157]
  52. ChemMedChem. 2021 May 6;16(9):1336-1359 [PMID: 33428327]
  53. J Mol Med (Berl). 2022 Jan;100(1):43-51 [PMID: 34698870]
  54. Mol Carcinog. 2014 Sep;53(9):722-35 [PMID: 23475695]
  55. Nat Struct Mol Biol. 2013 Feb;20(2):182-7 [PMID: 23292142]
  56. Appl Microbiol Biotechnol. 2007 Jun;75(3):487-97 [PMID: 17377789]
  57. Chem Biol. 2015 Feb 19;22(2):273-84 [PMID: 25699604]
  58. Environ Health Perspect. 2006 Mar;114(3):A160-7 [PMID: 16507447]
  59. Nat Rev Genet. 2009 Jan;10(1):32-42 [PMID: 19065135]
  60. Mol Oncol. 2012 Dec;6(6):579-89 [PMID: 22963873]
  61. Future Oncol. 2017 Mar;13(6):477-488 [PMID: 27776419]
  62. J Biol Chem. 2013 Sep 13;288(37):26926-43 [PMID: 23897821]
  63. Bioorg Med Chem Lett. 2020 Jul 1;30(13):127197 [PMID: 32331932]
  64. Sci Adv. 2023 Mar 15;9(11):eadd3243 [PMID: 36930718]
  65. J Chem Inf Model. 2017 Dec 26;57(12):2911-2937 [PMID: 29243483]
  66. Chem Biol Drug Des. 2006 May;67(5):370-2 [PMID: 16784462]
  67. J Clin Invest. 2008 Nov;118(11):3588-97 [PMID: 18830415]
  68. Gene. 2015 May 10;562(1):8-15 [PMID: 25701602]
  69. Mol Cell. 1998 Dec;2(6):851-61 [PMID: 9885572]
  70. J Med Chem. 2016 Nov 10;59(21):9942-9959 [PMID: 27754681]
  71. Cells. 2020 Mar 23;9(3): [PMID: 32210140]
  72. Cancer Res. 2002 Sep 1;62(17):4916-21 [PMID: 12208741]
  73. PLoS One. 2016 Mar 31;11(3):e0152498 [PMID: 27031333]
  74. Clin Cancer Res. 2007 Apr 15;13(8):2318-22 [PMID: 17438089]
  75. Bioorg Med Chem Lett. 2010 May 15;20(10):3142-5 [PMID: 20392638]
  76. Anal Chem. 1975 Sep;47(11):1824-9 [PMID: 1163784]
  77. Oncogene. 2007 Aug 13;26(37):5433-8 [PMID: 17694084]
  78. J Med Chem. 2017 Jun 22;60(12):4780-4804 [PMID: 28241112]
  79. Future Med Chem. 2012 Mar;4(4):505-24 [PMID: 22416777]
  80. Eur J Med Chem. 2015 Mar 26;93:584-98 [PMID: 25748123]
  81. EMBO J. 2000 Aug 15;19(16):4342-50 [PMID: 10944117]
  82. J Phys Chem B. 2007 Feb 22;111(7):1846-57 [PMID: 17256983]
  83. J Med Chem. 2016 Mar 24;59(6):2423-35 [PMID: 26937828]

Grants

  1. 46995445/Deutsche Forschungsgemeinschaft

Word Cloud

Similar Articles

Cited By