Recent Progress and Trends in the Development of Electrospun and 3D Printed Polymeric-Based Materials to Overcome Antimicrobial Resistance (AMR).

Pablo C Caracciolo, Gustavo A Abraham, Ernesto S Battaglia, Silvestre Bongiovanni Abel
Author Information
  1. Pablo C Caracciolo: Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina. ORCID
  2. Gustavo A Abraham: Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina. ORCID
  3. Ernesto S Battaglia: Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina.
  4. Silvestre Bongiovanni Abel: Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina. ORCID

Abstract

Antimicrobial resistance (AMR) developed by microorganisms is considered one of the most critical public health issues worldwide. This problem is affecting the lives of millions of people and needs to be addressed promptly. Mainly, antibiotics are the substances that contribute to AMR in various strains of bacteria and other microorganisms, leading to infectious diseases that cannot be effectively treated. To avoid the use of antibiotics and similar drugs, several approaches have gained attention in the fields of materials science and engineering as well as pharmaceutics over the past five years. Our focus lies on the design and manufacture of polymeric-based materials capable of incorporating antimicrobial agents excluding the aforementioned substances. In this sense, two of the emerging techniques for materials fabrication, namely, electrospinning and 3D printing, have gained significant attraction. In this article, we provide a summary of the most important findings that contribute to the development of antimicrobial systems using these technologies to incorporate various types of nanomaterials, organic molecules, or natural compounds with the required property. Furthermore, we discuss and consider the challenges that lie ahead in this research field for the coming years.

Keywords

References

  1. Eur Polym J. 2019 Oct;119:176-180 [PMID: 38362526]
  2. J Biomater Sci Polym Ed. 2011;22(4-6):505-17 [PMID: 20566043]
  3. Acta Biomater. 2016 Dec;46:112-128 [PMID: 27686039]
  4. Int J Biol Macromol. 2023 May 31;238:124078 [PMID: 36944378]
  5. Polymers (Basel). 2022 Aug 28;14(17): [PMID: 36080605]
  6. Biomed Mater. 2017 Sep 13;12(5):055003 [PMID: 28762959]
  7. Front Public Health. 2020 Nov 04;8:535668 [PMID: 33251170]
  8. Ann Biomed Eng. 2020 Feb;48(2):536-555 [PMID: 31741226]
  9. Int J Mol Sci. 2019 Nov 21;20(23): [PMID: 31766441]
  10. Aesthet Surg J. 2018 Oct 15;38(11):1188-1196 [PMID: 29378017]
  11. Dis Mon. 2020 Jun;66(6):100971 [PMID: 32201008]
  12. ACS Appl Mater Interfaces. 2020 Apr 22;12(16):18792-18802 [PMID: 32216378]
  13. Prog Addit Manuf. 2022;7(2):325-350 [PMID: 38624631]
  14. Biomaterials. 2019 Jan;190-191:86-96 [PMID: 30408640]
  15. ACS Biomater Sci Eng. 2019 Nov 11;5(11):6290-6299 [PMID: 33405536]
  16. Molecules. 2020 Apr 07;25(7): [PMID: 32272751]
  17. Colloids Surf B Biointerfaces. 2021 Apr;200:111588 [PMID: 33529928]
  18. ACS Appl Mater Interfaces. 2015 Jun 17;7(23):12751-9 [PMID: 25980639]
  19. Biomolecules. 2019 Mar 18;9(3): [PMID: 30889930]
  20. Nat Rev Microbiol. 2013 Jun;11(6):371-84 [PMID: 23669886]
  21. Int J Pharm. 2014 Jan 1;459(1-2):62-4 [PMID: 24239831]
  22. Materials (Basel). 2018 Jun 22;11(7): [PMID: 29932127]
  23. Pharmaceutics. 2021 Feb 06;13(2): [PMID: 33562128]
  24. Biomed Mater. 2020 Apr 15;15(3):035015 [PMID: 32032966]
  25. ACS Omega. 2022 Mar 29;7(14):11555-11559 [PMID: 35449978]
  26. Chem Rev. 2019 Apr 24;119(8):5298-5415 [PMID: 30916938]
  27. Wound Repair Regen. 2007 Jan-Feb;15(1):94-104 [PMID: 17244325]
  28. Int J Nanomedicine. 2015 Jan 09;10:357-70 [PMID: 25624758]
  29. Polymers (Basel). 2022 Mar 27;14(7): [PMID: 35406236]
  30. ACS Appl Bio Mater. 2020 Jun 15;3(6):3751-3760 [PMID: 35025245]
  31. Int J Mol Sci. 2023 Jan 13;24(2): [PMID: 36675140]
  32. ACS Appl Bio Mater. 2020 May 18;3(5):3430-3439 [PMID: 35025385]
  33. Int J Biol Macromol. 2017 Nov;104(Pt A):708-715 [PMID: 28645765]
  34. Mater Sci Eng C Mater Biol Appl. 2021 Feb;119:111450 [PMID: 33321588]
  35. Materials (Basel). 2021 May 27;14(11): [PMID: 34072271]
  36. ACS Appl Mater Interfaces. 2021 Feb 3;13(4):5678-5690 [PMID: 33492946]
  37. J Mater Sci Mater Med. 2010 Feb;21(2):807-13 [PMID: 19802687]
  38. Int J Biol Macromol. 2019 Jan;121:1329-1336 [PMID: 30201568]
  39. Carbohydr Polym. 2018 Jul 1;191:127-135 [PMID: 29661300]
  40. Pharmaceutics. 2021 Jun 26;13(7): [PMID: 34206857]
  41. Polymers (Basel). 2022 Apr 20;14(9): [PMID: 35566830]
  42. Eur J Pharm Sci. 2022 Mar 1;170:106103 [PMID: 34936936]
  43. Polymers (Basel). 2022 Jul 05;14(13): [PMID: 35808799]
  44. Dermatol Surg. 1999 Feb;25(2):89-93 [PMID: 10037509]
  45. Biochem Pharmacol. 1987 Nov 15;36(22):4007-12 [PMID: 3689432]
  46. Nature. 2000 Aug 17;406(6797):775-81 [PMID: 10963607]
  47. J Dent. 2022 May;120:104098 [PMID: 35321828]
  48. Acta Biomater. 2018 Oct 1;79:265-275 [PMID: 30125670]
  49. Adv Wound Care (New Rochelle). 2019 Sep 1;8(9):438-451 [PMID: 31737424]
  50. Adv Mater. 2020 Aug;32(33):e2002129 [PMID: 32602146]
  51. Front Microbiol. 2019 Sep 19;10:2173 [PMID: 31608028]
  52. Int J Pharm. 2017 Jul 15;527(1-2):161-170 [PMID: 28461267]
  53. ACS Appl Bio Mater. 2019 Oct 21;2(10):4258-4270 [PMID: 35021441]
  54. J Mech Behav Biomed Mater. 2021 Oct;122:104649 [PMID: 34218017]
  55. Mater Today Proc. 2023;72:2540-2546 [PMID: 36267469]
  56. Pharmaceutics. 2020 Jul 29;12(8): [PMID: 32751391]
  57. Int J Mol Sci. 2016 Aug 09;17(8): [PMID: 27517903]
  58. Polymers (Basel). 2017 Dec 22;10(1): [PMID: 30966045]
  59. ACS Appl Bio Mater. 2019 Feb 18;2(2):807-823 [PMID: 35016285]
  60. Antibiotics (Basel). 2022 Feb 04;11(2): [PMID: 35203804]
  61. PLoS Pathog. 2022 May 25;18(5):e1010534 [PMID: 35613180]
  62. Int J Mol Sci. 2021 Jan 11;22(2): [PMID: 33440866]
  63. Nanotechnology. 2020 Apr 24;31(17):172002 [PMID: 31931493]
  64. Biofabrication. 2017 Jun 07;9(2):024102 [PMID: 28589921]
  65. BMC Oral Health. 2022 Dec 15;22(1):611 [PMID: 36522725]
  66. Microb Pathog. 2019 Sep;134:103580 [PMID: 31195112]
  67. Colloids Surf B Biointerfaces. 2017 Feb 1;150:1-7 [PMID: 27863264]
  68. ACS Biomater Sci Eng. 2019 Aug 12;5(8):4037-4047 [PMID: 33448805]
  69. Future Microbiol. 2018 Feb;13:241-262 [PMID: 29319341]
  70. Polymers (Basel). 2022 Jun 09;14(12): [PMID: 35745907]
  71. Adv Sci (Weinh). 2020 Apr 30;7(12):1902307 [PMID: 32596102]
  72. Curr Opin Microbiol. 2019 Oct;51:72-80 [PMID: 31733401]
  73. Front Pharmacol. 2020 Mar 20;11:122 [PMID: 32265689]
  74. Nanomaterials (Basel). 2017 Apr 12;7(4): [PMID: 28417912]
  75. Front Med (Lausanne). 2019 May 24;6:105 [PMID: 31179281]
  76. J Prosthet Dent. 2021 Jun;125(6):946-950 [PMID: 32680736]
  77. Photochem Photobiol Sci. 2019 May 15;18(5):1020-1029 [PMID: 30821303]
  78. Int J Biol Macromol. 2021 Sep 30;187:91-104 [PMID: 34298048]
  79. Adv Colloid Interface Sci. 2020 Oct;284:102250 [PMID: 32966964]
  80. Angew Chem Int Ed Engl. 2023 Apr 17;62(17):e202217345 [PMID: 36718001]
  81. J Mech Behav Biomed Mater. 2022 Oct;134:105421 [PMID: 36037709]
  82. Bioresour Technol. 2006 Jun;97(9):1148-59 [PMID: 16551535]
  83. Pharmaceutics. 2021 Dec 07;13(12): [PMID: 34959388]
  84. 3D Print Addit Manuf. 2018 Mar;5(1):29-35 [PMID: 31008143]
  85. Polymers (Basel). 2020 Sep 25;12(10): [PMID: 32992820]
  86. Heliyon. 2019 Aug 24;5(8):e02352 [PMID: 31485534]
  87. J Antimicrob Chemother. 2008 Jun;61(6):1281-7 [PMID: 18364400]
  88. Int J Biol Macromol. 2021 Jan 15;167:1552-1563 [PMID: 33212109]
  89. Adv Healthc Mater. 2020 Aug;9(15):e1901735 [PMID: 32548973]
  90. Int J Mol Sci. 2023 May 17;24(10): [PMID: 37240240]
  91. Pharmaceutics. 2019 Nov 01;11(11): [PMID: 31683863]
  92. Antibiotics (Basel). 2019 Apr 24;8(2): [PMID: 31022923]
  93. Langmuir. 2012 Nov 27;28(47):16408-22 [PMID: 23121175]
  94. Polymers (Basel). 2019 Nov 16;11(11): [PMID: 31744085]
  95. J Mech Behav Biomed Mater. 2023 Jan;137:105536 [PMID: 36327651]
  96. Dent Mater. 2022 Aug;38(8):1432-1442 [PMID: 35792014]
  97. Adv Mater. 2020 Jul;32(29):e2000556 [PMID: 32510631]
  98. J Biomed Mater Res B Appl Biomater. 2012 Nov;100(8):2288-96 [PMID: 22987792]
  99. Nanomaterials (Basel). 2020 Aug 09;10(8): [PMID: 32784939]
  100. 3D Print Addit Manuf. 2020 Jun 1;7(3):100-103 [PMID: 36655198]
  101. J Mater Chem B. 2019 Apr 21;7(15):2534-2548 [PMID: 32255130]
  102. J Biomater Appl. 2021 Sep;36(3):460-473 [PMID: 33596707]
  103. Acta Biomater. 2010 Jul;6(7):2562-71 [PMID: 20060936]
  104. Biomater Sci. 2021 Aug 7;9(15):5144-5149 [PMID: 34236349]
  105. Mater Today Bio. 2022 Aug 30;16:100412 [PMID: 36097597]
  106. ACS Appl Mater Interfaces. 2019 Oct 9;11(40):37103-37111 [PMID: 31566952]
  107. Tissue Eng Part B Rev. 2020 Jun;26(3):272-283 [PMID: 32089089]
  108. Pharmaceutics. 2023 Jan 26;15(2): [PMID: 36839739]
  109. Front Bioeng Biotechnol. 2019 Nov 26;7:346 [PMID: 32039166]
  110. Mater Sci Eng C Mater Biol Appl. 2016 Dec 1;69:27-36 [PMID: 27612685]
  111. Eur J Clin Microbiol Infect Dis. 2002 Jul;21(7):553-6 [PMID: 12172750]
  112. Carbohydr Polym. 2021 May 1;259:117716 [PMID: 33673992]
  113. Am J Med. 2012 Jan;125(1 Suppl):S3-13 [PMID: 22196207]
  114. J Control Release. 2021 Jun 10;334:463-484 [PMID: 33781809]
  115. Adv Colloid Interface Sci. 2021 Jul;293:102436 [PMID: 34023568]
  116. Nanotechnology. 2018 Mar 23;29(12):125604 [PMID: 29355838]
  117. Lett Appl Microbiol. 2022 May;74(5):765-776 [PMID: 35118690]
  118. ACS Nano. 2021 Mar 23;15(3):3808-3848 [PMID: 33629585]
  119. Biology (Basel). 2021 Feb 10;10(2): [PMID: 33578705]
  120. Nat Commun. 2023 Apr 25;14(1):2381 [PMID: 37185359]
  121. ACS Biomater Sci Eng. 2016 Oct 10;2(10):1781-1786 [PMID: 27747289]
  122. Molecules. 2023 Apr 30;28(9): [PMID: 37175243]
  123. Adv Mater. 2019 Nov;31(45):e1804838 [PMID: 30379355]
  124. Future Med Chem. 2020 Nov;12(22):2035-2065 [PMID: 33169622]
  125. Mater Sci Eng C Mater Biol Appl. 2020 Mar;108:110377 [PMID: 31924045]
  126. Int J Biol Macromol. 2020 Apr 27;158:9-17 [PMID: 32353508]
  127. RSC Adv. 2020 Jan 29;10(8):4805-4816 [PMID: 35495239]
  128. Curr Opin Colloid Interface Sci. 2021 Oct;55:101480 [PMID: 34149297]
  129. J Colloid Interface Sci. 2021 Feb 15;584:164-173 [PMID: 33069016]
  130. Pharmaceutics. 2023 Jul 01;15(7): [PMID: 37514052]
  131. Int J Mol Sci. 2019 Jun 19;20(12): [PMID: 31248075]

Grants

  1. PICT 2018-02334/Agencia Nacional de Promoción Científica y Tecnológica
  2. PIBAA-0182/National Scientific and Technical Research Council
  3. PI-INICIAL R.R. Nº 5304/21/National University of Mar del Plata

Word Cloud

Created with Highcharts 10.0.0materialsantimicrobialAMRAntimicrobialresistancemicroorganismsantibioticssubstancescontributevariousapproachesgainedyearsagentselectrospinning3DdevelopedconsideredonecriticalpublichealthissuesworldwideproblemaffectinglivesmillionspeopleneedsaddressedpromptlyMainlystrainsbacterialeadinginfectiousdiseaseseffectivelytreatedavoidusesimilardrugsseveralattentionfieldsscienceengineeringwellpharmaceuticspastfivefocusliesdesignmanufacturepolymeric-basedcapableincorporatingexcludingaforementionedsensetwoemergingtechniquesfabricationnamelyprintingsignificantattractionarticleprovidesummaryimportantfindingsdevelopmentsystemsusingtechnologiesincorporatetypesnanomaterialsorganicmoleculesnaturalcompoundsrequiredpropertyFurthermorediscussconsiderchallengeslieaheadresearchfieldcomingRecentProgressTrendsDevelopmentElectrospunPrintedPolymeric-BasedMaterialsOvercomeResistanceadditivemanufacturingantibiotic-freepolymericcomposites

Similar Articles

Cited By