Filter-Free, Harmless, and Single-Wavelength Far UV-C Germicidal Light for Reducing Airborne Pathogenic Viral Infection.

Cao-Sang Truong, Palaniyandi Muthukutty, Ho Kyung Jang, Young-Ho Kim, Dong Hoon Lee, So Young Yoo
Author Information
  1. Cao-Sang Truong: BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea. ORCID
  2. Palaniyandi Muthukutty: BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea. ORCID
  3. Ho Kyung Jang: SUNJE HI TEK Co., Ltd., Busan 46047, Republic of Korea.
  4. Young-Ho Kim: Department of Molecular Biology and Immunology, College of Medicine, Kosin University, Busan 49267, Republic of Korea.
  5. Dong Hoon Lee: SUNJE HI TEK Co., Ltd., Busan 46047, Republic of Korea.
  6. So Young Yoo: BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea. ORCID

Abstract

Germicidal lamps that primarily emit 254 nm ultraviolet (UV) radiation have been effectively utilized for surface sterilization, but they cannot be used on human skin and eyes due to their harmful and genotoxic activity. Recent reports have shown that far UV-C light (207-222 nm) can efficiently kill pathogens with potentially no harm to exposed human tissues. However, these methods still require additional filtering and/or further protective equipment. In this study, we demonstrate a filter-free, harmless, and single-wavelength far UV-C 207 nm germicidal light source that can be used to inactivate different respiratory viruses. It can be exploited as a safe and effective disinfection tool for various airborne viruses. We successfully developed a single-wavelength far UV-C source that produces an exact wavelength of 207 nm. We examined its safety on human skin and corneal cell lines, as well as its effects on inactivating different airborne viruses, such as coronavirus, adenovirus, and vaccinia virus. We expect that our far UV-C lamps can be safely and conveniently used to reduce COVID-19 infections and protect both our living spaces and hospitals from the threat of contamination by possible new or mutant viruses.

Keywords

References

  1. Public Health Rep. 2010 Jan-Feb;125(1):15-27 [PMID: 20402193]
  2. J Thorac Dis. 2018 Jul;10(Suppl 19):S2295-S2304 [PMID: 30116608]
  3. Int J Radiat Biol. 2006 Nov;82(11):781-92 [PMID: 17148262]
  4. Radiat Res. 2017 Apr;187(4):483-491 [PMID: 28225654]
  5. Int J Health Sci (Qassim). 2020 Nov-Dec;14(6):52-65 [PMID: 33192232]
  6. Appl Environ Microbiol. 2007 Sep;73(18):5760-6 [PMID: 17644645]
  7. Int J Dermatol. 2010 Sep;49(9):978-86 [PMID: 20883261]
  8. J Wound Care. 2021 Feb 02;30(2):96-104 [PMID: 33573483]
  9. Environ Sci Technol. 2021 Apr 6;55(7):4174-4182 [PMID: 33263988]
  10. Photochem Photobiol. 2021 May;97(3):466-470 [PMID: 33497482]
  11. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  12. Cancer Res. 1987 Jan 15;47(2):410-3 [PMID: 3791231]
  13. Pak J Med Sci. 2020 May;36(COVID19-S4):S79-S84 [PMID: 32582319]
  14. Photochem Photobiol. 2021 May;97(3):517-523 [PMID: 33465817]
  15. Sci Rep. 2020 Jun 24;10(1):10285 [PMID: 32581288]
  16. Sci Rep. 2020 Nov 12;10(1):19659 [PMID: 33184316]
  17. Appl Environ Microbiol. 2002 Oct;68(10):5167-9 [PMID: 12324370]
  18. Photochem Photobiol. 2021 May;97(3):527-531 [PMID: 33471372]
  19. Photochem Photobiol. 2021 May;97(3):485-492 [PMID: 33590879]
  20. Lancet Respir Med. 2020 Jul;8(7):658-659 [PMID: 32473123]
  21. Photodiagnosis Photodyn Ther. 2021 Mar;33:102184 [PMID: 33484873]
  22. Health Phys. 2004 Aug;87(2):171-86 [PMID: 15257218]
  23. Photochem Photobiol Sci. 2012 Jan;11(1):90-7 [PMID: 21804977]
  24. PLoS One. 2020 Aug 12;15(8):e0235948 [PMID: 32785216]
  25. PLoS One. 2013 Oct 16;8(10):e76968 [PMID: 24146947]
  26. Sci Rep. 2021 Dec 28;11(1):24470 [PMID: 34963690]
  27. Br J Dermatol. 2021 Jun;184(6):1197-1199 [PMID: 33452809]
  28. Photochem Photobiol. 2020 Jul;96(4):853-862 [PMID: 32222977]
  29. Sci Rep. 2022 Mar 23;12(1):4373 [PMID: 35322064]
  30. Photochem Photobiol. 2021 May;97(3):493-497 [PMID: 33759191]
  31. Virol Sin. 2021 Feb;36(1):141-144 [PMID: 32458296]
  32. Proc Natl Acad Sci U S A. 2021 Jan 26;118(4): [PMID: 33431650]
  33. J Expo Sci Environ Epidemiol. 2022 Sep;32(5):751-758 [PMID: 35477766]
  34. GMS Hyg Infect Control. 2020 May 14;15:Doc08 [PMID: 32547908]
  35. J Photochem Photobiol. 2022 Jun;10:100107 [PMID: 35036965]
  36. Photochem Photobiol. 2021 May;97(3):505-516 [PMID: 33749837]
  37. Mutat Res. 2005 Apr 1;571(1-2):19-31 [PMID: 15748635]
  38. Anim Health Res Rev. 2011 Jun;12(1):15-23 [PMID: 21676338]
  39. Methods Mol Biol. 2009;510:329-36 [PMID: 19009272]
  40. Curr Med Chem. 2018;25(40):5503-5511 [PMID: 29110595]
  41. PLoS One. 2018 Jul 25;13(7):e0201259 [PMID: 30044862]
  42. PLoS One. 2016 Jun 08;11(6):e0138418 [PMID: 27275949]
  43. Sci Rep. 2018 Feb 9;8(1):2752 [PMID: 29426899]

MeSH Term

Humans
COVID-19
Ultraviolet Rays
Skin
Viruses
Disinfection

Word Cloud

Created with Highcharts 10.0.0UV-Cnmfarvirusescanusedhuman207airborneGermicidallampsskinlightfilter-freeharmlesssingle-wavelengthsourcedifferentcoronavirusprimarilyemit254ultravioletUVradiationeffectivelyutilizedsurfacesterilizationeyesdueharmfulgenotoxicactivityRecentreportsshown207-222efficientlykillpathogenspotentiallyharmexposedtissuesHowevermethodsstillrequireadditionalfilteringand/orprotectiveequipmentstudydemonstrategermicidalinactivaterespiratoryexploitedsafeeffectivedisinfectiontoolvarioussuccessfullydevelopedproducesexactwavelengthexaminedsafetycornealcelllineswelleffectsinactivatingadenovirusvacciniavirusexpectsafelyconvenientlyreduceCOVID-19infectionsprotectlivingspaceshospitalsthreatcontaminationpossiblenewmutantFilter-FreeHarmlessSingle-WavelengthFarLightReducingAirbornePathogenicViralInfectionultraviolet-C

Similar Articles

Cited By

No available data.