Combined transcriptomics and metabolomics analysis reveals the molecular mechanism of heat tolerance of Le023M, a mutant in .

Qin Zhang, Rencai Feng, Renyun Miao, Junbin Lin, Luping Cao, Yanqing Ni, Wensheng Li, Xu Zhao
Author Information
  1. Qin Zhang: Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China.
  2. Rencai Feng: Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China.
  3. Renyun Miao: Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China.
  4. Junbin Lin: Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China.
  5. Luping Cao: College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
  6. Yanqing Ni: College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China.
  7. Wensheng Li: College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China.
  8. Xu Zhao: Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610299, Sichuan, China.

Abstract

, one of the most highly regarded edible mushrooms in China, is susceptible to damage from high temperatures. However, a mutant strain derived from , known as Le023M, has shown exceptional thermotolerance. Compared to the original strain Le023, Le023M exhibited accelerated mycelial recovery following heat stress. Through RNA-seq analysis, the majority of differentially expressed genes (DEGs) were found to be associated with functions such as "protein refolding", "protein unfolding", "protein folding", and "response to heat", all of which are closely linked to heat shock proteins. Furthermore, qRT-PCR results revealed significant accumulation of heat shock-related genes in Le023M under heat stress. GC-MS analysis indicated elevated levels of trehalose, aspartate, and glutamate in Le023M when subjected to heat stress. The highly expressed genes involved in these metabolic pathways were predominantly found in Le023M. Collectively, these findings highlight the following: (i) the crucial role of heat shock proteins (HSPs) in the thermo-resistant mechanisms of Le023M; (ii) the potential of trehalose accumulation in Le023M to enhance mycelium resistance to heat stress; and (iii) the induction of aspartate and glutamate accumulation in response to heat stress. These results shed light on the molecular mechanisms underlying the thermotolerance of Le023M, providing valuable insights for further understanding and improving heat stress response in . The findings also highlight the potential applications of Le023M in the cultivation and production of under high-temperature conditions.

Keywords

References

  1. Protoplasma. 2019 Jul;256(4):1165-1169 [PMID: 30675652]
  2. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  3. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  4. Biol Pharm Bull. 2008 Mar;31(3):421-5 [PMID: 18310903]
  5. Curr Issues Mol Biol. 2023 Jan 09;45(1):614-627 [PMID: 36661527]
  6. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  7. PLoS Pathog. 2012 Dec;8(12):e1003069 [PMID: 23300438]
  8. J Exp Biol. 2020 Feb 5;223(Pt 3): [PMID: 31915203]
  9. Nucleic Acids Res. 2008 Jan;36(Database issue):D480-4 [PMID: 18077471]
  10. J Biosci. 2007 Apr;32(3):611-9 [PMID: 17536180]
  11. Int J Mol Sci. 2019 May 10;20(9): [PMID: 31083449]
  12. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  13. Cell Physiol Biochem. 2018;50(5):1617-1637 [PMID: 30384356]
  14. Plant Physiol Biochem. 2019 May;138:91-99 [PMID: 30856415]
  15. Front Plant Sci. 2019 Jun 25;10:800 [PMID: 31293607]
  16. Arch Microbiol. 2022 Apr 4;204(5):240 [PMID: 35377020]
  17. Hepatogastroenterology. 2009 Mar-Apr;56(90):437-41 [PMID: 19579616]
  18. Biomed Res Int. 2018 Jun 11;2018:1670328 [PMID: 29992134]
  19. Molecules. 2023 Feb 02;28(3): [PMID: 36771108]
  20. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  21. Microb Cell Fact. 2017 Jun 15;16(1):109 [PMID: 28619110]
  22. Microbiologyopen. 2016 Aug;5(4):709-18 [PMID: 27147196]
  23. Microbiology (Reading). 2006 Sep;152(Pt 9):2625-2634 [PMID: 16946258]
  24. Trends Plant Sci. 2004 May;9(5):244-52 [PMID: 15130550]
  25. Sci Rep. 2016 Sep 20;6:33650 [PMID: 27644410]
  26. Mol Biol Rep. 2016 Feb;43(2):53-64 [PMID: 26694324]
  27. BMC Genomics. 2019 Jan 21;20(1):70 [PMID: 30665351]
  28. J Altern Complement Med. 2002 Oct;8(5):581-9 [PMID: 12470439]
  29. Anticancer Res. 2009 Jul;29(7):2611-7 [PMID: 19596936]
  30. Biotechnol Lett. 2012 Oct;34(10):1915-9 [PMID: 22763851]
  31. Cell Res. 2006 Jun;16(6):599-608 [PMID: 16775631]
  32. Mol Microbiol. 2012 Apr;84(2):296-309 [PMID: 22375627]
  33. Arch Biochem Biophys. 1968 Apr;125(1):189-98 [PMID: 5655425]
  34. Microb Cell Fact. 2021 Apr 7;20(1):82 [PMID: 33827585]
  35. Appl Environ Microbiol. 2011 Oct;77(19):6841-51 [PMID: 21821737]
  36. G3 (Bethesda). 2017 Jun 7;7(6):1941-1954 [PMID: 28450372]
  37. Front Plant Sci. 2021 Jul 09;12:704905 [PMID: 34305991]
  38. Appl Microbiol Biotechnol. 2021 Oct;105(20):7567-7576 [PMID: 34536103]
  39. Microbiol Mol Biol Rev. 2012 Jun;76(2):115-58 [PMID: 22688810]
  40. Plant J. 2020 Sep;103(6):2069-2083 [PMID: 32573848]
  41. Biochim Biophys Acta. 2008 Dec;1780(12):1408-11 [PMID: 18601980]
  42. Curr Opin Plant Biol. 2005 Feb;8(1):86-92 [PMID: 15653405]
  43. Trends Biochem Sci. 2012 Mar;37(3):118-25 [PMID: 22236506]
  44. Int J Med Sci. 2018 Jun 14;15(10):1014-1024 [PMID: 30013443]
  45. Saudi J Biol Sci. 2021 Mar;28(3):1654-1663 [PMID: 33732051]
  46. Life Sci. 2003 Nov 14;73(26):3363-74 [PMID: 14572878]
  47. Cell Stress Chaperones. 2018 Mar;23(2):223-234 [PMID: 28812232]
  48. Nat Methods. 2013 Jan;10(1):71-3 [PMID: 23160280]

Word Cloud

Created with Highcharts 10.0.0Le023Mheatstressanalysisgenes"proteinaccumulationhighlymutantstrainthermotoleranceexpressedfoundshockproteinsresultstrehaloseaspartateglutamatefindingshighlightmechanismspotentialresponsemolecularoneregardedediblemushroomsChinasusceptibledamagehightemperaturesHoweverderivedknownshownexceptionalComparedoriginalLe023exhibitedacceleratedmycelialrecoveryfollowingRNA-seqmajoritydifferentiallyDEGsassociatedfunctionsrefolding"unfolding"folding""responseheat"closelylinkedFurthermoreqRT-PCRrevealedsignificantshock-relatedGC-MSindicatedelevatedlevelssubjectedinvolvedmetabolicpathwayspredominantlyCollectivelyfollowing:crucialroleHSPsthermo-resistantiienhancemyceliumresistanceiiiinductionshedlightunderlyingprovidingvaluableinsightsunderstandingimprovingalsoapplicationscultivationproductionhigh-temperatureconditionsCombinedtranscriptomicsmetabolomicsrevealsmechanismtoleranceHeatLentinulaedodesMetaboliteProteinfoldingTrehalose

Similar Articles

Cited By