Geometric deep learning as a potential tool for antimicrobial peptide prediction.

Fabiano C Fernandes, Marlon H Cardoso, Abel Gil-Ley, L��via V Luchi, Maria G L da Silva, Maria L R Macedo, Cesar de la Fuente-Nunez, Octavio L Franco
Author Information
  1. Fabiano C Fernandes: Centro de An��lises Prote��micas e Bioqu��micas, P��s-Gradua����o em Ci��ncias Gen��micas e Biotecnologia, Universidade Cat��lica de Bras��lia, Bras��lia, Brazil.
  2. Marlon H Cardoso: Centro de An��lises Prote��micas e Bioqu��micas, P��s-Gradua����o em Ci��ncias Gen��micas e Biotecnologia, Universidade Cat��lica de Bras��lia, Bras��lia, Brazil.
  3. Abel Gil-Ley: S-Inova Biotech, Programa de P��s-Gradua����o em Biotecnologia, Universidade Cat��lica Dom Bosco, Campo Grande, Brazil.
  4. L��via V Luchi: S-Inova Biotech, Programa de P��s-Gradua����o em Biotecnologia, Universidade Cat��lica Dom Bosco, Campo Grande, Brazil.
  5. Maria G L da Silva: Centro de An��lises Prote��micas e Bioqu��micas, P��s-Gradua����o em Ci��ncias Gen��micas e Biotecnologia, Universidade Cat��lica de Bras��lia, Bras��lia, Brazil.
  6. Maria L R Macedo: Laborat��rio de Purifica����o de Prote��nas e suas Fun����es Biol��gicas, Universidade Federal de Mato Grosso do Sul, Cidade Universit��ria, Campo Grande, Mato Grosso do Sul, Brazil.
  7. Cesar de la Fuente-Nunez: Machine Biology Group, Departments of Psychiatry and Microbiology, Perelman School of Medicine, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.
  8. Octavio L Franco: Centro de An��lises Prote��micas e Bioqu��micas, P��s-Gradua����o em Ci��ncias Gen��micas e Biotecnologia, Universidade Cat��lica de Bras��lia, Bras��lia, Brazil.

Abstract

Antimicrobial peptides (AMPs) are components of natural immunity against invading pathogens. They are polymers that fold into a variety of three-dimensional structures, enabling their function, with an underlying sequence that is best represented in a non-flat space. The structural data of AMPs exhibits non-Euclidean characteristics, which means that certain properties, e.g., differential manifolds, common system of coordinates, vector space structure, or translation-equivariance, along with basic operations like convolution, in non-Euclidean space are not distinctly established. Geometric deep learning (GDL) refers to a category of machine learning methods that utilize deep neural models to process and analyze data in non-Euclidean settings, such as graphs and manifolds. This emerging field seeks to expand the use of structured models to these domains. This review provides a detailed summary of the latest developments in designing and predicting AMPs utilizing GDL techniques and also discusses both current research gaps and future directions in the field.

Keywords

References

  1. Science. 2020 May 1;368(6490): [PMID: 32355003]
  2. Bioinformatics. 2023 Jan 1;39(1): [PMID: 36342186]
  3. Nat Commun. 2018 Apr 16;9(1):1490 [PMID: 29662055]
  4. Nat Biomed Eng. 2022 Jan;6(1):67-75 [PMID: 34737399]
  5. Sci Rep. 2016 Nov 02;6:35465 [PMID: 27804992]
  6. Commun Biol. 2021 Sep 9;4(1):1050 [PMID: 34504303]
  7. Protein Sci. 2020 Jan;29(1):36-42 [PMID: 31441165]
  8. BMC Genomics. 2022 Jan 25;23(1):77 [PMID: 35078402]
  9. mSystems. 2019 Jun 11;4(3): [PMID: 31186311]
  10. Digit Discov. 2022 Mar 31;1(3):195-208 [PMID: 35769205]
  11. Biomolecules. 2021 Mar 22;11(3): [PMID: 33810011]
  12. Antibiotics (Basel). 2022 Oct 21;11(10): [PMID: 36290108]
  13. J Chem Inf Model. 2023 Feb 13;63(3):835-845 [PMID: 36724090]
  14. Infect Immun. 2021 Mar 17;89(4): [PMID: 33558318]
  15. ACS Nano. 2021 Feb 23;15(2):2143-2164 [PMID: 33538585]
  16. Nucleic Acids Res. 2016 Jan 4;44(D1):D1119-26 [PMID: 26527728]
  17. Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93 [PMID: 26602694]
  18. Signal Transduct Target Ther. 2022 Feb 14;7(1):48 [PMID: 35165272]
  19. IEEE Trans Neural Netw. 2009 Jan;20(1):61-80 [PMID: 19068426]
  20. Cell Host Microbe. 2023 Aug 9;31(8):1260-1274.e6 [PMID: 37516110]
  21. Int J Mol Sci. 2021 Oct 22;22(21): [PMID: 34768832]
  22. Front Genet. 2022 Nov 03;13:1062576 [PMID: 36406112]
  23. Nat Methods. 2020 Feb;17(2):184-192 [PMID: 31819266]
  24. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33774670]
  25. IEEE Trans Neural Netw Learn Syst. 2022 Dec;33(12):6999-7019 [PMID: 34111009]
  26. Membranes (Basel). 2022 Jul 14;12(7): [PMID: 35877911]
  27. Int J Mol Sci. 2020 Feb 02;21(3): [PMID: 32024233]
  28. EMBO Rep. 2020 Dec 3;21(12):e51034 [PMID: 33400359]
  29. Biochim Biophys Acta. 2016 May;1858(5):1061-9 [PMID: 26724202]
  30. Mol Divers. 2021 Aug;25(3):1315-1360 [PMID: 33844136]
  31. Mol Ther Nucleic Acids. 2020 Jun 5;20:882-894 [PMID: 32464552]
  32. Lancet Infect Dis. 2020 Sep;20(9):e216-e230 [PMID: 32653070]

Grants

  1. R35 GM138201/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0deeplearningantimicrobialpeptideAMPsspacenon-EuclideandatamanifoldsGeometricGDLmodelsfieldpredictionAntimicrobialpeptidescomponentsnaturalimmunityinvadingpathogenspolymersfoldvarietythree-dimensionalstructuresenablingfunctionunderlyingsequencebestrepresentednon-flatstructuralexhibitscharacteristicsmeanscertainpropertiesegdifferentialcommonsystemcoordinatesvectorstructuretranslation-equivariancealongbasicoperationslikeconvolutiondistinctlyestablishedreferscategorymachinemethodsutilizeneuralprocessanalyzesettingsgraphsemergingseeksexpandusestructureddomainsreviewprovidesdetailedsummarylatestdevelopmentsdesigningpredictingutilizingtechniquesalsodiscussescurrentresearchgapsfuturedirectionspotentialtoolclassificationdesignexplainableartificialintelligencegeometric

Similar Articles

Cited By