Altered Thalamocortical Signaling in a Mouse Model of Parkinson's Disease.

Olivia K Swanson, Priscilla E Yevoo, Dave Richard, Arianna Maffei
Author Information
  1. Olivia K Swanson: Department of Neurobiology and Behavior, State University of New York-Stony Brook, Stony Brook, New York 11794.
  2. Priscilla E Yevoo: Department of Neurobiology and Behavior, State University of New York-Stony Brook, Stony Brook, New York 11794.
  3. Dave Richard: Department of Neurobiology and Behavior, State University of New York-Stony Brook, Stony Brook, New York 11794.
  4. Arianna Maffei: Department of Neurobiology and Behavior, State University of New York-Stony Brook, Stony Brook, New York 11794 Arianna.maffei@stonybrook.edu. ORCID

Abstract

Activation of the primary motor cortex (M1) is important for the execution of skilled movements and motor learning, and its dysfunction contributes to the pathophysiology of Parkinson's disease (PD). A well-accepted idea in PD research, albeit not tested experimentally, is that the loss of midbrain dopamine leads to decreased activation of M1 by the motor thalamus. Here, we report that midbrain dopamine loss altered motor thalamus input in a laminar- and cell type-specific fashion and induced laminar-specific changes in intracortical synaptic transmission. Frequency-dependent changes in synaptic dynamics were also observed. Our results demonstrate that loss of midbrain dopaminergic neurons alters thalamocortical activation of M1 in both male and female mice, and provide novel insights into circuit mechanisms for motor cortex dysfunction in a mouse model of PD. Loss of midbrain dopamine neurons increases inhibition from the basal ganglia to the motor thalamus, suggesting that it may ultimately lead to reduced activation of primary motor cortex (M1). In contrast with this line of thinking, analysis of M1 activity in patients and animal models of Parkinson's disease report hyperactivation of this region. Our results are the first report that midbrain dopamine loss alters the input-output function of M1 through laminar and cell type specific effects. These findings support and expand on the idea that loss of midbrain dopamine reduces motor cortex activation and provide experimental evidence that reconciles reduced thalamocortical input with reports of altered activation of motor cortex in patients with Parkinson's disease.

Keywords

References

  1. Curr Opin Neurobiol. 2011 Apr;21(2):269-74 [PMID: 21353526]
  2. Cell Rep. 2017 May 2;19(5):1045-1055 [PMID: 28467898]
  3. Exp Neurol. 2008 Jul;212(1):226-9 [PMID: 18501351]
  4. eNeuro. 2021 Oct 18;8(5): [PMID: 34556558]
  5. Neuron. 2016 Mar 16;89(6):1173-1179 [PMID: 26948893]
  6. Neurosci Biobehav Rev. 2013 Dec;37(10 Pt 2):2737-50 [PMID: 24113323]
  7. Front Synaptic Neurosci. 2013 Dec 06;5:11 [PMID: 24367330]
  8. Prog Neurobiol. 2000 Sep;62(1):63-88 [PMID: 10821982]
  9. Trends Neurosci. 1989 Oct;12(10):366-75 [PMID: 2479133]
  10. J Neurosci. 2008 Sep 10;28(37):9164-72 [PMID: 18784297]
  11. Trends Neurosci. 2002 Apr;25(4):206-12 [PMID: 11998689]
  12. Neuron. 2011 Sep 8;71(5):858-68 [PMID: 21903079]
  13. Nat Neurosci. 2015 Sep;18(9):1299-1309 [PMID: 26237365]
  14. J Neurosci. 2006 Apr 5;26(14):3875-84 [PMID: 16597742]
  15. J Neurosci. 2014 Nov 12;34(46):15455-65 [PMID: 25392512]
  16. Front Synaptic Neurosci. 2020 Mar 27;12:11 [PMID: 32292337]
  17. Neuroepidemiology. 2016;46(4):292-300 [PMID: 27105081]
  18. Cereb Cortex. 2019 Apr 1;29(4):1802-1815 [PMID: 30721984]
  19. Front Neuroanat. 2014 Mar 26;8:16 [PMID: 24723858]
  20. Front Cell Neurosci. 2019 Sep 13;13:417 [PMID: 31572130]
  21. Cereb Cortex. 2019 Mar 1;29(3):921-936 [PMID: 29373653]
  22. J Neurophysiol. 2014 Mar;111(5):1100-19 [PMID: 24353298]
  23. Neurobiol Dis. 2008 Sep;31(3):422-32 [PMID: 18598767]
  24. Nat Neurosci. 2008 Mar;11(3):360-6 [PMID: 18246064]
  25. J Neurosci. 2015 Jan 21;35(3):1089-105 [PMID: 25609625]
  26. Nat Neurosci. 2015 Aug;18(8):1109-15 [PMID: 26098758]
  27. AJNR Am J Neuroradiol. 2013 Jan;34(1):74-9 [PMID: 22766668]
  28. Neuron. 2011 Oct 20;72(2):231-43 [PMID: 22017986]
  29. Curr Biol. 2013 Feb 4;23(3):236-43 [PMID: 23290556]
  30. Clin Neurophysiol. 2005 Feb;116(2):244-53 [PMID: 15661100]
  31. Cereb Cortex. 2016 Aug;26(8):3494-507 [PMID: 27193420]
  32. PLoS One. 2009 Sep 17;4(9):e7082 [PMID: 19759902]
  33. Front Mol Neurosci. 2019 Jul 03;12:168 [PMID: 31333413]
  34. J Neurosci. 2002 Sep 15;22(18):8158-69 [PMID: 12223570]
  35. J Neurosci. 2013 Feb 27;33(9):4181-91 [PMID: 23447625]
  36. Lancet Neurol. 2005 Dec;4(12):815-20 [PMID: 16297839]
  37. J Neurosci. 1998 Nov 1;18(21):9038-54 [PMID: 9787008]
  38. Nat Neurosci. 2014 Jul;17(7):987-94 [PMID: 24880217]
  39. J Neurosci Methods. 2020 Feb 1;331:108526 [PMID: 31756397]
  40. J Neurophysiol. 2013 Aug;110(4):817-25 [PMID: 23699057]
  41. J Neurosci. 2013 Jan 9;33(2):748-60 [PMID: 23303952]
  42. J Neurosci. 2012 Oct 3;32(40):13718-28 [PMID: 23035084]
  43. Curr Opin Neurobiol. 2018 Apr;49:33-41 [PMID: 29172091]
  44. Cereb Cortex. 2011 Apr;21(4):865-76 [PMID: 20739477]
  45. Biochem Soc Trans. 2010 Apr;38(2):493-7 [PMID: 20298209]
  46. Nat Neurosci. 2006 Feb;9(2):251-9 [PMID: 16415865]
  47. J Neurosci. 2011 Feb 16;31(7):2481-7 [PMID: 21325515]
  48. Front Comput Neurosci. 2013 Oct 30;7:154 [PMID: 24198783]
  49. Neuron. 2016 Feb 17;89(4):734-40 [PMID: 26833136]
  50. J Neurosci. 2010 Feb 10;30(6):2223-34 [PMID: 20147549]
  51. Continuum (Minneap Minn). 2010 Feb;16(1 Movement Disorders):13-48 [PMID: 22810179]
  52. Neuron. 2018 Sep 5;99(5):1040-1054.e5 [PMID: 30146302]
  53. Nat Neurosci. 2007 May;10(5):663-8 [PMID: 17435752]
  54. Curr Opin Neurobiol. 2007 Aug;17(4):417-22 [PMID: 17707635]
  55. Nat Neurosci. 2015 Sep;18(9):1196-8 [PMID: 26308978]
  56. Neuron. 2005 Oct 20;48(2):315-27 [PMID: 16242411]
  57. Cell Rep. 2018 May 1;23(5):1286-1300.e7 [PMID: 29719245]
  58. Cereb Cortex. 2016 Jun;26(6):2689-2704 [PMID: 26045568]
  59. Transl Neurodegener. 2018 Jul 25;7:17 [PMID: 30065816]
  60. Front Neural Circuits. 2015 May 08;9:20 [PMID: 26005406]
  61. Science. 2010 Apr 2;328(5974):106-9 [PMID: 20360111]
  62. Behav Brain Res. 2005 Jul 1;162(1):1-10 [PMID: 15922062]
  63. Exp Physiol. 1993 May;78(3):263-301 [PMID: 8329205]
  64. J Neurosci. 2015 Jan 21;35(3):1149-59 [PMID: 25609629]
  65. Cell Rep. 2017 Jul 11;20(2):308-318 [PMID: 28700934]
  66. Nature. 2012 Apr 25;484(7395):473-8 [PMID: 22538608]
  67. Nat Neurosci. 2014 Sep;17(9):1276-85 [PMID: 25086607]
  68. Nat Rev Neurosci. 2013 Apr;14(4):278-91 [PMID: 23511908]
  69. Front Cell Neurosci. 2013 Oct 16;7:174 [PMID: 24137110]

Grants

  1. R01 DC013770/NIDCD NIH HHS
  2. R01 DC019827/NIDCD NIH HHS

MeSH Term

Male
Mice
Female
Animals
Parkinson Disease
Dopamine
Basal Ganglia
Movement
Thalamus
Disease Models, Animal

Chemicals

Dopamine

Word Cloud

Created with Highcharts 10.0.0motorM1midbraindopaminecortexParkinson'slossactivationdiseasePDthalamusreportsynapticthalamocorticalprimarydysfunctionideaalteredinputcellchangestransmissionresultsneuronsaltersprovidereducedpatientsActivationimportantexecutionskilledmovementslearningcontributespathophysiologywell-acceptedresearchalbeittestedexperimentallyleadsdecreasedlaminar-type-specificfashioninducedlaminar-specificintracorticalFrequency-dependentdynamicsalsoobserveddemonstratedopaminergicmalefemalemicenovelinsightscircuitmechanismsmousemodelLossincreasesinhibitionbasalgangliasuggestingmayultimatelyleadcontrastlinethinkinganalysisactivityanimalmodelshyperactivationregionfirstinput-outputfunctionlaminartypespecificeffectsfindingssupportexpandreducesexperimentalevidencereconcilesreportsAlteredThalamocorticalSignalingMouseModelDiseaseparvalbuminpyramidalneuron

Similar Articles

Cited By