Melatonin supplementation promotes muscle fiber hypertrophy and regulates lipid metabolism of skeletal muscle in weaned piglets.

Wentao Chen, Yuang Tu, Peiran Cai, Liyi Wang, Yanbing Zhou, Shiqi Liu, Yuqin Huang, Shu Zhang, Xin Gu, Wuzhou Yi, Tizhong Shan
Author Information
  1. Wentao Chen: College of Animal Sciences, Zhejiang University, Hangzhou, China.
  2. Yuang Tu: College of Animal Sciences, Zhejiang University, Hangzhou, China.
  3. Peiran Cai: College of Animal Sciences, Zhejiang University, Hangzhou, China.
  4. Liyi Wang: College of Animal Sciences, Zhejiang University, Hangzhou, China.
  5. Yanbing Zhou: College of Animal Sciences, Zhejiang University, Hangzhou, China.
  6. Shiqi Liu: College of Animal Sciences, Zhejiang University, Hangzhou, China.
  7. Yuqin Huang: College of Animal Sciences, Zhejiang University, Hangzhou, China.
  8. Shu Zhang: College of Animal Sciences, Zhejiang University, Hangzhou, China.
  9. Xin Gu: College of Animal Sciences, Zhejiang University, Hangzhou, China.
  10. Wuzhou Yi: College of Animal Sciences, Zhejiang University, Hangzhou, China.
  11. Tizhong Shan: College of Animal Sciences, Zhejiang University, Hangzhou, China. ORCID

Abstract

Melatonin has been reported to play crucial roles in regulating meat quality, improving reproductive properties, and maintaining intestinal health in animal production, but whether it regulates skeletal muscle development in weaned piglet is rarely studied. This study was conducted to investigate the effects of melatonin on growth performance, skeletal muscle development, and lipid metabolism in animals by intragastric administration of melatonin solution. Twelve 28-d-old DLY (Duroc × Landrace × Yorkshire) weaned piglets with similar body weight were randomly divided into two groups: control group and melatonin group. The results showed that melatonin supplementation for 23 d had no effect on growth performance, but significantly reduced serum glucose content (P < 0.05). Remarkably, melatonin increased longissimus dorsi muscle (LDM) weight, eye muscle area and decreased the liver weight in weaned piglets (P < 0.05). In addition, the cross-sectional area of muscle fibers was increased (P < 0.05), while triglyceride levels were decreased in LDM and psoas major muscle by melatonin treatment (P < 0.05). Transcriptome sequencing showed melatonin induced the expression of genes related to skeletal muscle hypertrophy and fatty acid oxidation. Enrichment analysis indicated that melatonin regulated cholesterol metabolism, protein digestion and absorption, and mitophagy signaling pathways in muscle. Gene set enrichment analysis also confirmed the effects of melatonin on skeletal muscle development and mitochondrial structure and function. Moreover, quantitative real-time polymerase chain reaction analysis revealed that melatonin supplementation elevated the gene expression of cell differentiation and muscle fiber development, including paired box 7 (PAX7), myogenin (MYOG), myosin heavy chain (MYHC) IIA and MYHC IIB (P < 0.05), which was accompanied by increased insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 5 (IGFBP5) expression in LDM (P < 0.05). Additionally, melatonin regulated lipid metabolism and activated mitochondrial function in muscle by increasing the mRNA abundance of cytochrome c oxidase subunit 6A (COX6A), COX5B, and carnitine palmitoyltransferase 2 (CPT2) and decreasing the mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG), acetyl-CoA carboxylase (ACC) and fatty acid-binding protein 4 (FABP4) (P < 0.05). Together, our results suggest that melatonin could promote skeletal muscle growth and muscle fiber hypertrophy, improve mitochondrial function and decrease fat deposition in muscle.

Keywords

References

  1. Front Physiol. 2021 Oct 06;12:748801 [PMID: 34690816]
  2. Front Endocrinol (Lausanne). 2022 Aug 19;13:966120 [PMID: 36060949]
  3. Microsc Res Tech. 2017 Nov;80(11):1174-1181 [PMID: 28742227]
  4. Histochem Cell Biol. 2001 May;115(5):359-72 [PMID: 11449884]
  5. Anat Rec (Hoboken). 2008 Apr;291(4):448-55 [PMID: 18293375]
  6. J Pineal Res. 2021 Sep;71(2):e12754 [PMID: 34139040]
  7. Menopause. 2014 Jan;21(1):39-44 [PMID: 23760432]
  8. J Anim Sci. 2023 Jan 3;101: [PMID: 37052981]
  9. Exp Cell Res. 2010 Nov 1;316(18):3081-6 [PMID: 20828559]
  10. J Pineal Res. 2018 Mar;64(2): [PMID: 28875556]
  11. Eur Rev Med Pharmacol Sci. 2021 Jan;25(2):1024-1033 [PMID: 33577058]
  12. J Endocrinol. 2021 Jul 22;251(1):15-25 [PMID: 34156346]
  13. Anim Nutr. 2022 Sep 27;12:87-95 [PMID: 36632618]
  14. J Pineal Res. 2021 Apr;70(3):e12725 [PMID: 33621367]
  15. J Anim Sci Biotechnol. 2019 Sep 02;10:70 [PMID: 31497294]
  16. J Pineal Res. 2009 Oct;47(3):238-52 [PMID: 19664004]
  17. PLoS One. 2019 May 6;14(5):e0216392 [PMID: 31059537]
  18. Ageing Res Rev. 2018 Nov;47:123-132 [PMID: 30048806]
  19. Trends Endocrinol Metab. 2020 Mar;31(3):192-204 [PMID: 31901302]
  20. Mol Cell Biochem. 2019 Dec;462(1-2):133-155 [PMID: 31451998]
  21. J Neuroendocrinol. 2001 Dec;13(12):1025-32 [PMID: 11722698]
  22. J Neurol. 2022 Jan;269(1):205-216 [PMID: 33417003]
  23. J Exp Bot. 2012 Jan;63(2):577-97 [PMID: 22016420]
  24. J Pineal Res. 2012 Mar;52(2):203-10 [PMID: 21883445]
  25. J Lipid Res. 2019 Apr;60(4):767-782 [PMID: 30552289]
  26. J Pineal Res. 2014 Sep;57(2):155-67 [PMID: 24981026]
  27. J Physiol Pharmacol. 2011 Feb;62(1):13-9 [PMID: 21451205]
  28. Annu Rev Anim Biosci. 2021 Feb 16;9:355-377 [PMID: 33338390]
  29. J Pineal Res. 2020 Mar;68(2):e12627 [PMID: 31773776]
  30. J Endocrinol. 2007 Sep;194(3):637-43 [PMID: 17761903]
  31. Nat Commun. 2021 Jun 17;12(1):3715 [PMID: 34140474]
  32. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  33. Int J Mol Sci. 2023 Mar 23;24(7): [PMID: 37047070]
  34. J Appl Physiol (1985). 2017 Apr 1;122(4):1003-1010 [PMID: 28008100]
  35. Neurochem Res. 2022 Apr;47(4):885-896 [PMID: 35061163]
  36. J Anim Physiol Anim Nutr (Berl). 2022 Sep;106(5):1139-1148 [PMID: 35023236]
  37. J Pineal Res. 2005 Nov;39(4):400-8 [PMID: 16207296]
  38. Calcif Tissue Int. 2015 Mar;96(3):183-95 [PMID: 25294644]
  39. Proc Nutr Soc. 2017 Nov;76(4):603-618 [PMID: 28942754]
  40. J Cell Physiol. 2015 May;230(5):1033-41 [PMID: 25251157]
  41. J Agric Food Chem. 2020 Nov 18;68(46):12779-12787 [PMID: 32045229]
  42. Front Nutr. 2021 Sep 29;8:746765 [PMID: 34660668]
  43. Crit Rev Food Sci Nutr. 2017 Mar 24;57(5):958-962 [PMID: 25975843]

MeSH Term

Animals
Swine
Lipid Metabolism
Melatonin
Muscle, Skeletal
Muscle Fibers, Skeletal
RNA, Messenger
Dietary Supplements
Hypertrophy
Swine Diseases

Chemicals

Melatonin
RNA, Messenger

Word Cloud

Created with Highcharts 10.0.0musclemelatoninP < 005skeletalgrowthdevelopmentweanedmetabolismlipidexpressionhypertrophyfiberperformancepigletsweightsupplementationincreasedLDManalysisproteinmitochondrialfunctionMelatoninregulatespigleteffectsgroupresultsshowedareadecreasedfattyregulatedchainMYHCinsulin-likefactormRNAreportedplaycrucialrolesregulatingmeatqualityimprovingreproductivepropertiesmaintainingintestinalhealthanimalproductionwhetherrarelystudiedstudyconductedinvestigateanimalsintragastricadministrationsolutionTwelve28-d-oldDLYDuroc × Landrace × Yorkshiresimilarbodyrandomlydividedtwogroups:control23deffectsignificantlyreducedserumglucosecontentRemarkablylongissimusdorsieyeliveradditioncross-sectionalfiberstriglyceridelevelspsoasmajortreatmentTranscriptomesequencinginducedgenesrelatedacidoxidationEnrichmentindicatedcholesteroldigestionabsorptionmitophagysignalingpathwaysGenesetenrichmentalsoconfirmedstructureMoreoverquantitativereal-timepolymerasereactionrevealedelevatedgenecelldifferentiationincludingpairedbox7PAX7myogeninMYOGmyosinheavyIIAIIBaccompanied1IGF-1binding5IGFBP5Additionallyactivatedincreasingabundancecytochromecoxidasesubunit6ACOX6ACOX5Bcarnitinepalmitoyltransferase2CPT2decreasingperoxisomeproliferator-activatedreceptorgammaPPARGacetyl-CoAcarboxylaseACCacid-binding4FABP4Togethersuggestpromoteimprovedecreasefatdepositionpromotes

Similar Articles

Cited By