Biofilm stimulating activity of solanidine and Solasodine in Pseudomonas aeruginosa.

Hadi Ghoomdost Noori, Omid Tadjrobehkar, Elham Moazamian
Author Information
  1. Hadi Ghoomdost Noori: Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
  2. Omid Tadjrobehkar: Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran. o.tadjrobehkar@kmu.ac.ir.
  3. Elham Moazamian: Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.

Abstract

BACKGROUND: Biofilm formation has reported as an important virulence associated properties of Pseudomonas aeruginosa that is regulated by quorum-sensing associated genes. Biofilm and quorum-sensing interfering properties of steroidal alkaloids, Solanidine and Solasodine were investigated in the present study.
RESULTS: Biofilm formation capacity and relative expression level of five studied genes(lasI, lasR, rhlI, rhlR and algD) were significantly increased dose-dependently after treatment with sub-inhibitory concentrations (32 and 512 µg/ml) of the both Solanidine and Solasodine. Biofilm formation capacity was more stimulated in weak biofilm formers(9 iaolates) in comparison to the strong biofilm producers(11 isolates). The lasI gene was the most induced QS-associated gene among five investigated genes.
CONCLUSION: Biofilm inducing properties of the plants alkaloids and probably medicines derived from them has to be considered for revision of therapeutic guidelines. Investigating the biofilm stimulating properties of corticosteroids and other medicines that comes from plant alkaloids also strongly proposed.

References

  1. Appl Microbiol Biotechnol. 2019 Apr;103(8):3521-3535 [PMID: 30852658]
  2. Microbes Infect. 2022 Jun;24(4):104950 [PMID: 35139390]
  3. Int J Antimicrob Agents. 2014 Nov;44(5):377-86 [PMID: 25130096]
  4. Nat Protoc. 2008;3(6):1101-8 [PMID: 18546601]
  5. Microbiology (Reading). 2010 Aug;156(Pt 8):2271-2282 [PMID: 20488878]
  6. Sci Rep. 2020 Apr 14;10(1):6364 [PMID: 32286447]
  7. J Antimicrob Chemother. 2000 Mar;45(3):315-20 [PMID: 10702550]
  8. Biofouling. 2017 Sep;33(8):624-639 [PMID: 28792229]
  9. Biomol Ther (Seoul). 2016 Nov 1;24(6):561-571 [PMID: 27795450]
  10. APMIS. 2007 Aug;115(8):891-9 [PMID: 17696944]
  11. Infect Drug Resist. 2020 Aug 12;13:2801-2810 [PMID: 32848429]
  12. Trends Microbiol. 2018 Apr;26(4):313-328 [PMID: 29132819]
  13. Microb Pathog. 2017 Oct;111:99-107 [PMID: 28818490]
  14. PLoS One. 2015 Mar 17;10(3):e0119564 [PMID: 25781975]
  15. Signal Transduct Target Ther. 2022 Jun 25;7(1):199 [PMID: 35752612]
  16. Antimicrob Resist Infect Control. 2019 Jul 16;8:118 [PMID: 31346459]
  17. Biotechnol Adv. 2021 Jul-Aug;49:107734 [PMID: 33785375]
  18. Protein Cell. 2015 Jan;6(1):26-41 [PMID: 25249263]
  19. J Adv Res. 2017 Jan;8(1):55-61 [PMID: 28053782]
  20. PLoS Pathog. 2019 Mar 20;15(3):e1007511 [PMID: 30893371]
  21. BMC Pharmacol Toxicol. 2018 Feb 13;19(1):7 [PMID: 29439722]
  22. J Med Microbiol. 2004 Sep;53(Pt 9):841-853 [PMID: 15314190]
  23. Appl Environ Microbiol. 2009 Aug;75(15):5131-40 [PMID: 19525275]
  24. Appl Environ Microbiol. 2001 Apr;67(4):1865-73 [PMID: 11282644]
  25. Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17981-6 [PMID: 24143808]
  26. Antimicrob Agents Chemother. 2008 Apr;52(4):1446-53 [PMID: 18195062]
  27. Int J Cancer. 2019 Oct 1;145(7):1731-1744 [PMID: 30387881]
  28. Microorganisms. 2022 Jun 16;10(6): [PMID: 35744757]
  29. Antimicrob Agents Chemother. 2012 Aug;56(8):4131-9 [PMID: 22615276]
  30. Eur J Med Chem. 2014 Jun 10;80:605-20 [PMID: 24877760]
  31. Biotechnol Lett. 2018 Jul;40(7):1087-1100 [PMID: 29680931]
  32. Curr Opin Microbiol. 2018 Oct;45:164-169 [PMID: 30053750]
  33. Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):7027-7032 [PMID: 30850547]
  34. Microb Pathog. 2019 Jun;131:128-134 [PMID: 30959097]
  35. BMC Microbiol. 2010 Jan 30;10:33 [PMID: 20113519]
  36. Drug Discov Today. 2019 Jan;24(1):350-359 [PMID: 30036575]
  37. Drugs. 2021 Dec;81(18):2117-2131 [PMID: 34743315]
  38. EMBO Mol Med. 2015 Jun 15;7(8):992-3 [PMID: 26077592]
  39. Antimicrob Agents Chemother. 2018 May 25;62(6): [PMID: 29610201]
  40. J Antimicrob Chemother. 2012 Mar;67(3):559-68 [PMID: 22129590]
  41. Int J Artif Organs. 2011 Sep;34(9):737-51 [PMID: 22094552]
  42. Mol Pharm. 2015 May 4;12(5):1544-53 [PMID: 25793309]
  43. BMC Complement Altern Med. 2019 Jul 18;19(1):177 [PMID: 31319827]
  44. Int J Mol Sci. 2019 Apr 13;20(8): [PMID: 31013936]
  45. J Microsc Ultrastruct. 2018 Jan-Mar;6(1):1-10 [PMID: 30023261]

MeSH Term

Pseudomonas aeruginosa
Biofilms
Quorum Sensing
Virulence Factors
Bacterial Proteins

Chemicals

solasodine
solanidine
Virulence Factors
Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0BiofilmpropertiesformationgenesalkaloidsSolasodinebiofilmassociatedPseudomonasaeruginosaquorum-sensingSolanidineinvestigatedcapacityfivelasIgenemedicinesstimulatingBACKGROUND:reportedimportantvirulenceregulatedinterferingsteroidalpresentstudyRESULTS:relativeexpressionlevelstudiedlasRrhlIrhlRalgDsignificantlyincreaseddose-dependentlytreatmentsub-inhibitoryconcentrations32512 µg/mlstimulatedweakformers9iaolatescomparisonstrongproducers11isolatesinducedQS-associatedamongCONCLUSION:inducingplantsprobablyderivedconsideredrevisiontherapeuticguidelinesInvestigatingcorticosteroidscomesplantalsostronglyproposedactivitysolanidine

Similar Articles

Cited By