Autophagy Behavior under Local Hypothermia in Myocardiocytes Injury.

Basheer Abdullah Marzoog
Author Information
  1. Basheer Abdullah Marzoog: World-Class Research Center, Digital Biodesign and Personalized Healthcare, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia. ORCID

Abstract

Hypothermia and autophagy are critical regulators of cell homeostasis by regulating intra and intercellular cell communication. Myocardiocyte cryotherapy poses multiple cellular and subcellular effects on the injured cell, including upregulation of autophagy. Autophagy plays a crucial role in modifying cell metabolism by regulating downregulation, reducing reactive oxygen species production, and improving the natural cellular antioxidant defense system. Reduction of reactive oxygen species production and improving natural cellular antioxidant defense system. Therapeutic hypothermia ranges from 32-34��C in terms of local myocardiocyte cooling. Hypothermia induces autophagy by phosphorylating the Akt signaling pathway. Hypothermia has a more therapeutic effect when applied at the beginning of reperfusion rather than in the beginning of ischemia. Moderate hypothermia with 33��C poses most therapeutic effect by viability maintaining and reduction of reactive oxygen species release. Application of local hypothermia to myocardiocytes can be applied to infarcted myocardiocytes, anginal and to the cardiomyopathies.

Keywords

References

  1. Tsao C.W.; Aday A.W.; Almarzooq Z.I.; Alonso A.; Beaton A.Z.; Bittencourt M.S.; Boehme A.K.; Buxton A.E.; Carson A.P.; Commodore-Mensah Y.; Elkind M.S.V.; Evenson K.R.; Eze-Nliam C.; Ferguson J.F.; Generoso G.; Ho J.E.; Kalani R.; Khan S.S.; Kissela B.M.; Knutson K.L.; Levine D.A.; Lewis T.T.; Liu J.; Loop M.S.; Ma J.; Mussolino M.E.; Navaneethan S.D.; Perak A.M.; Poudel R.; Rezk-Hanna M.; Roth G.A.; Schroeder E.B.; Shah S.H.; Thacker E.L.; VanWagner L.B.; Virani S.S.; Voecks J.H.; Wang N.Y.; Yaffe K.; Martin S.S.; Heart disease and stroke statistics-2022 Update: A report from the american heart association. Circulation 2022,145(8),e153-e639 [DOI: 10.1161/CIR.0000000000001052]
  2. Marzoog B.A.; Vlasova T.I.; Myocardiocyte autophagy in the context of myocardiocytes regeneration: A potential novel therapeutic strategy. Egypt J Med Hum Genet 2022,23(1),41 [DOI: 10.1186/s43042-022-00250-8]
  3. Marzoog B.A.; Transcription factors - the essence of heart regeneration: A potential novel therapeutic strategy. Curr Mol Med 2023,23(3),232-238 [DOI: 10.2174/1566524022666220216123650]
  4. O���Gara P.T.; Kushner F.G.; Ascheim D.D.; Casey D.E.; Chung M.K.; de Lemos J.A.; Ettinger S.M.; Fang J.C.; Fesmire F.M.; Franklin B.A.; Granger C.B.; Krumholz H.M.; Linderbaum J.A.; Morrow D.A.; Newby L.K.; Ornato J.P.; Ou N.; Radford M.J.; Tamis-Holland J.E.; Tommaso J.E.; Tracy C.M.; Woo Y.J.; Zhao D.X.; 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: Executive summary: A report of the american college of cardiology foundation/american heart association task force on practice guidelines. Circulation 2013,127(4),529-555 [DOI: 10.1161/CIR.0b013e3182742c84]
  5. Neumann J.T.; Go��ling A.; S��rensen N.A.; Blankenberg S.; Magnussen C.; Westermann D.; Temporal trends in incidence and outcome of acute coronary syndrome. Clin Res Cardiol 2020,109(9),1186-1192 [DOI: 10.1007/s00392-020-01612-1]
  6. Neumann F.J.; Sousa-Uva M.; Ahlsson A.; Alfonso F.; Banning A.P.; Benedetto U.; Byrne R.A.; Collet J.P.; Falk V.; Head S.J.; J��ni P.; Kastrati A.; Koller A.; Kristensen S.D.; Niebauer J.; Richter D.J.; Seferovi�� P.M.; Sibbing D.; Stefanini G.G.; Windecker S.; Yadav R.; Zembala M.O.; Wijns W.; Glineur D.; Aboyans V.; Achenbach S.; Agewall S.; Andreotti F.; Barbato E.; Baumbach A.; Brophy J.; Bueno H.; Calvert P.A.; Capodanno D.; Davierwala P.M.; Delgado V.; Dudek D.; Freemantle N.; Funck-Brentano C.; Gaemperli O.; Gielen S.; Gilard M.; Gorenek B.; Haasenritter J.; Haude M.; Ibanez B.; Iung B.; Jeppsson A.; Katritsis D.; Knuuti J.; Kolh P.; Leite-Moreira A.; Lund L.H.; Maisano F.; Mehilli J.; Metzler B.; Montalescot G.; Pagano D.; Petronio A.S.; Piepoli M.F.; Popescu B.A.; S��daba R.; Shlyakhto E.; Silber S.; Simpson I.A.; Sparv D.; Tavilla G.; Thiele H.; Tousek P.; Van Belle E.; Vranckx P.; Witkowski A.; Zamorano J.L.; Roffi M.; Windecker S.; Aboyans V.; Agewall S.; Barbato E.; Bueno H.; Coca A.; Collet J-P.; Coman I.M.; Dean V.; Delgado V.; Fitzsimons D.; Gaemperli O.; Hindricks G.; Iung B.; J��ni P.; Katus H.A.; Knuuti J.; Lancellotti P.; Leclercq C.; McDonagh T.A.; Piepoli M.F.; Ponikowski P.; Richter D.J.; Roffi M.; Shlyakhto E.; Sousa-Uva M.; Simpson I.A.; Zamorano J.L.; Pagano D.; Freemantle N.; Sousa-Uva M.; Chettibi M.; Sisakian H.; Metzler B.; ��brahimov F.; Stelmashok V.I.; Postadzhiyan A.; Skoric B.; Eftychiou C.; Kala P.; Terkelsen C.J.; Magdy A.; Eha J.; Niemel�� M.; Kedev S.; Motreff P.; Aladashvili A.; Mehilli J.; Kanakakis I-G.; Becker D.; Gudnason T.; Peace A.; Romeo F.; Bajraktari G.; Kerimkulova A.; Rudz��tis A.; Ghazzal Z.; Kibarskis A.; Pereira B.; Xuereb R.G.; Hofma S.H.; Steigen T.K.; Witkowski A.; de Oliveira E.I.; Mot S.; Duplyakov D.; Zavatta M.; Beleslin B.; Kovar F.; Bunc M.; Ojeda S.; Witt N.; Jeger R.; Addad F.; Akdemir R.; Parkhomenko A.; Henderson R.; 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 2019,40(2),87-165 [DOI: 10.1093/eurheartj/ehy394]
  7. Hausenloy D.J.; Yellon D.M.; Myocardial ischemia-reperfusion injury: A neglected therapeutic target. J Clin Invest 2013,123(1),92-100 [DOI: 10.1172/JCI62874]
  8. Maruyama T.; Noda N.N.; Autophagy-regulating protease Atg4: Structure, function, regulation and inhibition. J Antibiot 2018,71(1),72-78 [DOI: 10.1038/ja.2017.104]
  9. El Farissi M.; Keulards D.C.J.; Zelis J.M.; van ���t Veer M.; Zimmermann F.M.; Pijls N.H.J.; Otterspoor L.C.; Hypothermia for reduction of myocardial reperfusion injury in acute myocardial infarction: Closing the translational gap. Circ Cardiovasc Interv 2021,14(8),e010326 [DOI: 10.1161/CIRCINTERVENTIONS.120.010326]
  10. Hale S.L.; Kloner R.A.; Mild hypothermia as a cardioprotective approach for acute myocardial infarction: Laboratory to clinical application. J Cardiovasc Pharmacol Ther 2011,16(2),131-139 [DOI: 10.1177/1074248410387280]
  11. Erlinge D.; G��tberg M.; Grines C.; Dixon S.; Baran K.; Kandzari D.; Olivecrona G.K.; A pooled analysis of the effect of endovascular cooling on infarct size in patients with ST-elevation myocardial infarction. EuroIntervention 2013,8(12),1435-1440 [DOI: 10.4244/EIJV8I12A217]
  12. Marzoog B.A.; Vlasova T.I.; Systemic and local hypothermia in the context of cell regeneration. Cryo Lett 2022,43(2),66-73 [DOI: 10.54680/fr22210110112]
  13. Marzoog B.A.; The metabolic syndrome puzzles; Possible pathogenesis and management. Curr Diabetes Rev 2023,19(4),e290422204258 [DOI: 10.2174/1573399818666220429100411]
  14. He C.; Klionsky D.J.; Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009,43(1),67-93 [DOI: 10.1146/annurev-genet-102808-114910]
  15. Parzych K.R.; Klionsky D.J.; An overview of autophagy: Morphology, mechanism, and regulation. Antioxid Redox Signal 2014,20(3),460-473 [DOI: 10.1089/ars.2013.5371]
  16. Yin Z.; Pascual C.; Klionsky D.; Autophagy: Machinery and regulation. Microb Cell 2016,3(12),588-596 [DOI: 10.15698/mic2016.12.546]
  17. Shao Z.H.; Sharp W.W.; Wojcik K.R.; Li C.Q.; Han M.; Chang W.T.; Ramachandran S.; Li J.; Hamann K.J.; Vanden Hoek T.L.; Therapeutic hypothermia cardioprotection via Akt- and nitric oxide-mediated attenuation of mitochondrial oxidants. Am J Physiol Heart Circ Physiol 2010,298(6),H2164-H2173 [DOI: 10.1152/ajpheart.00994.2009]
  18. Ren J.; Yang L.; Zhu L.; Xu X.; Ceylan A.F.; Guo W.; Yang J.; Zhang Y.; Akt2 ablation prolongs life span and improves myocardial contractile function with adaptive cardiac remodeling: Role of Sirt1-mediated autophagy regulation. Aging Cell 2017,16(5),976-987 [DOI: 10.1111/acel.12616]
  19. Chen J.; Bian X.; Li Y.; Xiao X.; Yin Y.; Du X.; Wang C.; Li L.; Bai Y.; Liu X.; Moderate hypothermia induces protection against hypoxia/reoxygenation injury by enhancing SUMOylation in cardiomyocytes. Mol Med Rep 2020,22(4),2617-2626 [DOI: 10.3892/mmr.2020.11374]
  20. Cheng B.C.; Huang H.S.; Chao C.M.; Hsu C.C.; Chen C.Y.; Chang C.P.; Hypothermia may attenuate ischemia/reperfusion-induced cardiomyocyte death by reducing autophagy. Int J Cardiol 2013,168(3),2064-2069 [DOI: 10.1016/j.ijcard.2013.01.162]
  21. Dai W.; Herring M.J.; Hale S.L.; Kloner R.A.; Rapid surface cooling by thermosuit system dramatically reduces scar size, prevents post���infarction adverse left ventricular remodeling, and improves cardiac function in rats. J Am Heart Assoc 2015,4(7),e002265 [DOI: 10.1161/JAHA.115.002265]
  22. Erlinge D.; G��tberg M.; Noc M.; Lang I.; Holzer M.; Clemmensen P.; Jensen U.; Metzler B.; James S.; B��tker H.E.; Omerovic E.; Koul S.; Engblom H.; Carlsson M.; Arheden H.; ��stlund O.; Wallentin L.; Klos B.; Harnek J.; Olivecrona G.K.; Therapeutic hypothermia for the treatment of acute myocardial infarction-combined analysis of the RAPID MI-ICE and the CHILL-MI trials. Ther Hypothermia Temp Manag 2015,5(2),77-84 [DOI: 10.1089/ther.2015.0009]
  23. V��squez-Trincado C.; Garc��a-Carvajal I.; Pennanen C.; Parra V.; Hill J.A.; Rothermel B.A.; Lavandero S.; Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol 2016,594(3),509-525 [DOI: 10.1113/JP271301]
  24. Marek-Iannucci S.; Thomas A.; Hou J.; Crupi A.; Sin J.; Taylor D.J.; Czer L.S.; Esmailian F.; Mentzer R.M.; Andres A.M.; Gottlieb R.A.; Myocardial hypothermia increases autophagic flux, mitochondrial mass and myocardial function after ischemia-reperfusion injury. Sci Rep 2019,9(1),10001 [DOI: 10.1038/s41598-019-46452-w]
  25. Morrison L.J.; Thoma B.; Translating targeted temperature management trials into postarrest care. N Engl J Med 2021,384(24),2344-2345 [DOI: 10.1056/NEJMe2106969]
  26. Yang D.; Guo S.; Zhang T.; Li H.; Hypothermia attenuates ischemia/reperfusion-induced endothelial cell apoptosis via alterations in apoptotic pathways and JNK signaling. FEBS Lett 2009,583(15),2500-2506 [DOI: 10.1016/j.febslet.2009.07.006]
  27. Kaneko T.; Kibayashi K.; Mild hypothermia facilitates the expression of cold-inducible RNA-binding protein and heat shock protein 70.1 in mouse brain. Brain Res 2012,1466,128-136 [DOI: 10.1016/j.brainres.2012.05.001]
  28. Physiology C.; Yang D.; Zeng Y.; Tian C.; Liu J.; Guo S-B.; Zheng Y-H.; Li H-H.; Li H.; Zheng Y.; Transcriptomic analysis of mild hypothermia-dependent alterations during endothelial reperfusion injury. Cell Physiol Biochem 2010,25(6),605-614 [DOI: 10.1159/000315079]
  29. Frink M.; Floh�� S.; van Griensven M.; Mommsen P.; Hildebrand F.; Facts and fiction: The impact of hypothermia on molecular mechanisms following major challenge. Mediators Inflamm 2012,2012,1-13 [DOI: 10.1155/2012/762840]
  30. Chip S.; Zelmer A.; Ogunshola O.O.; Felderhoff-Mueser U.; Nitsch C.; B��hrer C.; Wellmann S.; The RNA-binding protein RBM3 is involved in hypothermia induced neuroprotection. Neurobiol Dis 2011,43(2),388-396 [DOI: 10.1016/j.nbd.2011.04.010]
  31. Marzoog B.A.; Autophagy behavior in post-myocardial infarction injury. Cardiovasc Hematol Disord Drug Targets 2023,23 [DOI: 10.2174/1871529X23666230503123612]
  32. Erlinge D.; G��tberg M.; Lang I.; Holzer M.; Noc M.; Clemmensen P.; Jensen U.; Metzler B.; James S.; B��tker H.E.; Omerovic E.; Engblom H.; Carlsson M.; Arheden H.; ��stlund O.; Wallentin L.; Harnek J.; Olivecrona G.K.; Rapid endovascular catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. The CHILL-MI trial: A randomized controlled study of the use of central venous catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. J Am Coll Cardiol 2014,63(18),1857-1865 [DOI: 10.1016/j.jacc.2013.12.027]
  33. Nichol G.; Strickland W.; Shavelle D.; Maehara A.; Ben-Yehuda O.; Genereux P.; Dressler O.; Parvataneni R.; Nichols M.; McPherson J.; Barbeau G.; Laddu A.; Elrod J.A.; Tully G.W.; Ivanhoe R.; Stone G.W.; Prospective, multicenter, randomized, controlled pilot trial of peritoneal hypothermia in patients with ST-segment- elevation myocardial infarction. Circ Cardiovasc Interv 2015,8(3),e001965 [DOI: 10.1161/CIRCINTERVENTIONS.114.001965]
  34. Schacham Y.N.; Cohen B.; Bajracharya G.R.; Walters M.; Zimmerman N.; Mao G.; Tanios M.A.; Sessler D.I.; Mild perioperative hypothermia and myocardial injury. Anesth Analg 2018,127(6),1335-1341 [DOI: 10.1213/ANE.0000000000003840]
  35. Otterspoor L.C.; van Nunen L.X.; Rosalina T.T.; Veer M.V.; Tuijl S.V.; Stijnen M.; Rutten M.C.M.; van de Vosse F.N.; Pijls N.H.J.; Intracoronary hypothermia for acute myocardial infarction in the isolated beating pig heart. Am J Transl Res 2017,9(2),558-568 [PMID: 28337283]
  36. Alushi B.; Ndrepepa G.; Lauten A.; Lahmann A.L.; Bongiovanni D.; Kufner S.; Xhepa E.; Laugwitz K.L.; Joner M.; Landmesser U.; Thiele H.; Kastrati A.; Cassese S.; Hypothermia in patients with acute myocardial infarction: A meta-analysis of randomized trials. Clin Res Cardiol 2021,110(1),84-92 [DOI: 10.1007/s00392-020-01652-7]
  37. Dash R.; Mitsutake Y.; Pyun W.B.; Dawoud F.; Lyons J.; Tachibana A.; Yahagi K.; Matsuura Y.; Kolodgie F.D.; Virmani R.; McConnell M.V.; Illindala U.; Ikeno F.; Yeung A.; Dose-dependent cardioprotection of moderate (32��C) Versus Mild (35��C) therapeutic hypothermia in porcine acute myocardial infarction. JACC Cardiovasc Interv 2018,11(2),195-205 [DOI: 10.1016/j.jcin.2017.08.056]
  38. Kang I.S.; Fumiaki I.; Pyun W.B.; Therapeutic hypothermia for cardioprotection in acute myocardial infarction. Yonsei Med J 2016,57(2),291-297 [DOI: 10.3349/ymj.2016.57.2.291]
  39. Kohlhauer M.; Pell V.R.; Burger N.; Spiroski A.M.; Gruszczyk A.; Mulvey J.F.; Mottahedin A.; Costa A.S.H.; Frezza C.; Ghaleh B.; Murphy M.P.; Tissier R.; Krieg T.; Protection against cardiac ischemia-reperfusion injury by hypothermia and by inhibition of succinate accumulation and oxidation is additive. Basic Res Cardiol 2019,114(3),18 [DOI: 10.1007/s00395-019-0727-0]
  40. Woodall B.P.; Gustafsson ��.B.; Autophagy-A key pathway for cardiac health and longevity. Acta Physiol 2018,223(4),e13074 [DOI: 10.1111/apha.13074]
  41. Dai D.F.; Karunadharma P.P.; Chiao Y.A.; Basisty N.; Crispin D.; Hsieh E.J.; Chen T.; Gu H.; Djukovic D.; Raftery D.; Beyer R.P.; MacCoss M.J.; Rabinovitch P.S.; Altered proteome turnover and remodeling by short���term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell 2014,13(3),529-539 [DOI: 10.1111/acel.12203]
  42. Lee I.H.; Cao L.; Mostoslavsky R.; Lombard D.B.; Liu J.; Bruns N.E.; Tsokos M.; Alt F.W.; Finkel T.; A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci 2008,105(9),3374-3379 [DOI: 10.1073/pnas.0712145105]
  43. Haigis M.C.; Sinclair D.A.; Mammalian sirtuins: Biological insights and disease relevance. Annu Rev Pathol 2010,5(1),253-295 [DOI: 10.1146/annurev.pathol.4.110807.092250]
  44. Hariharan N.; Maejima Y.; Nakae J.; Paik J.; DePinho R.A.; Sadoshima J.; Deacetylation of foxo by sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res 2010,107(12),1470-1482 [DOI: 10.1161/CIRCRESAHA.110.227371]
  45. Barger J.L.; Kayo T.; Vann J.M.; Arias E.B.; Wang J.; Hacker T.A.; Wang Y.; Raederstorff D.; Morrow J.D.; Leeuwenburgh C.; Allison D.B.; Saupe K.W.; Cartee G.D.; Weindruch R.; Prolla T.A.; A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One 2008,3(6),e2264 [DOI: 10.1371/journal.pone.0002264]
  46. Yamamoto T.; Byun J.; Zhai P.; Ikeda Y.; Oka S.; Sadoshima J.; Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS One 2014,9(6),e98972 [DOI: 10.1371/journal.pone.0098972]
  47. Onken B.; Driscoll M.; Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One 2010,5(1),e8758 [DOI: 10.1371/journal.pone.0008758]
  48. Hsu C.P.; Oka S.; Shao D.; Hariharan N.; Sadoshima J.; Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ Res 2009,105(5),481-491 [DOI: 10.1161/CIRCRESAHA.109.203703]
  49. Galluzzi L.; Bravo-San Pedro J.M.; Levine B.; Green D.R.; Kroemer G.; Pharmacological modulation of autophagy: Therapeutic potential and persisting obstacles. Nat Rev Drug Discov 2017,16(7),487-511 [DOI: 10.1038/nrd.2017.22]
  50. Cohen H.Y.; Miller C.; Bitterman K.J.; Wall N.R.; Hekking B.; Kessler B.; Howitz K.T.; Gorospe M.; de Cabo R.; Sinclair D.A.; Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004,305(5682),390-392 [DOI: 10.1126/science.1099196]
  51. Morselli E.; Maiuri M.C.; Markaki M.; Megalou E.; Pasparaki A.; Palikaras K.; Criollo A.; Galluzzi L.; Malik S.A.; Vitale I.; Michaud M.; Madeo F.; Tavernarakis N.; Kroemer G.; Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis 2010,1(1),e10 [DOI: 10.1038/cddis.2009.8]
  52. Fryer L.G.D.; Parbu-Patel A.; Carling D.; The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 2002,277(28),25226-25232 [DOI: 10.1074/jbc.M202489200]
  53. Calvert J.W.; Gundewar S.; Jha S.; Greer J.J.M.; Bestermann W.H.; Tian R.; Lefer D.J.; Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 2008,57(3),696-705 [DOI: 10.2337/db07-1098]
  54. Sun D.; Yang F.; Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism. Biochem Biophys Res Commun 2017,486(2),329-335 [DOI: 10.1016/j.bbrc.2017.03.036]
  55. Alvers A.L.; Wood M.S.; Hu D.; Kaywell A.C.; Dunn W.A.; Aris J.P.; Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy 2009,5(6),847-849 [DOI: 10.4161/auto.8824]
  56. Wu X.; Liu Z.; Yu X.Y.; Xu S.; Luo J.; Autophagy and cardiac diseases: Therapeutic potential of natural products. Med Res Rev 2021,41(1),314-341 [DOI: 10.1002/med.21733]
  57. Abdullah Marzoog B.; Pathophysiology of cardiac cell injury in post-Covid-19 syndrome. Emir Med J 2023,4 [DOI: 10.2174/0250688204666230428120808]
  58. Marzoog B.A.; Autophagy behavior in endothelial cell regeneration. Curr Mol Med 2022
  59. Marzoog B.; Lipid behavior in metabolic syndrome pathophysiology. Curr Diabetes Rev 2022,18(6),e150921196497 [DOI: 10.2174/1573399817666210915101321]
  60. Marzoog B.A.; Vlasova T.I.; Membrane lipids under norm and pathology. Eur J Clini Experimen Med 2021,19(1),59-75 [DOI: 10.15584/ejcem.2021.1.9]
  61. Marzoog B.A.; Tree of life: Endothelial cell in norm and disease, the good guy is a partner in crime! Anat Cell Biol 2023,56(2),166-178 [DOI: 10.5115/acb.22.190]
  62. Mizushima N.; Levine B.; Cuervo A.M.; Klionsky D.J.; Autophagy fights disease through cellular self-digestion. Nature 2008,451(7182),1069-1075 [DOI: 10.1038/nature06639]
  63. Wirawan E.; Berghe T.V.; Lippens S.; Agostinis P.; Vandenabeele P.; Autophagy: For better or for worse. Cell Res 2012,22(1),43-61 [DOI: 10.1038/cr.2011.152]

Grants

  1. 075-15-2022-304/Ministry of Science and Higher Education of the Russian Federation

MeSH Term

Autophagy
Humans
Animals
Myocytes, Cardiac
Hypothermia, Induced
Reactive Oxygen Species

Chemicals

Reactive Oxygen Species

Word Cloud

Created with Highcharts 10.0.0cellHypothermiahypothermiaautophagycellularAutophagyreactiveoxygenspeciesregulatingposesproductionimprovingnaturalantioxidantdefensesystemlocaltherapeuticeffectappliedbeginningmyocardiocytescriticalregulatorshomeostasisintraintercellularcommunicationMyocardiocytecryotherapymultiplesubcellulareffectsinjuredincludingupregulationplayscrucialrolemodifyingmetabolismdownregulationreducingReductionTherapeuticranges32-34��CtermsmyocardiocytecoolinginducesphosphorylatingAktsignalingpathwayreperfusionratherischemiaModerate33��CviabilitymaintainingreductionreleaseApplicationcaninfarctedanginalcardiomyopathiesBehaviorLocalMyocardiocytesInjurylongevitymyocardialinfarctionpathogenesis&physiopathologyregeneration

Similar Articles

Cited By