OsAAI1 Increases Rice Yield and Drought Tolerance Dependent on ABA-Mediated Regulatory and ROS Scavenging Pathway.

Qing Long, Shichun Qiu, Jianmin Man, Denghong Ren, Ning Xu, Rui Luo
Author Information
  1. Qing Long: Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
  2. Shichun Qiu: Chongqing Three Gorges Academy of Agricultural Sciences, Wanzhou, Chongqing City, 404155, China.
  3. Jianmin Man: Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
  4. Denghong Ren: Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
  5. Ning Xu: Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China. nxu@gzu.edu.cn.
  6. Rui Luo: Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China. rluo1@gzu.edu.cn.

Abstract

In this study, we investigated the function of OsAAI1 in yield and drought tolerance by constructing overexpression line OE-OsAAI1 and mutant line osaai1. Bioinformatics analysis showed that the AAI gene-OsAAI1- belongs to the HPS_like subfamily of the AAI_LTSS superfamily, and OsAAI1 was localized in the nucleus. The expression of OsAAI1 was significantly induced by ABA and drought stress. OsAAI1 overexpression (OE19) significantly increased, and gene mutant (osaai1-1) repressed plant height, primary root length, lateral root number, grain size and yield in rice. Moreover, physiological and biochemical analyses showed that osaai1 was sensitive to drought stress, while OE19 enhanced the drought tolerance in rice. DAB and NBT staining revealed that under drought treatment, osaai1 accumulated a large amount of ROS compared with the wild type, while OE19 accumulated the least, and CAT, APX, GPX, GR activities were higher in OE19 and lower in osaai1, suggesting that OE19 improves rice tolerance to drought stress by enhancing ROS scavenging ability. OE19 also induce the expression of ABA-mediated regulatory pathway genes and enhance accumulation of ABA content in rice seedling. Predictably, OE19 displayed enhanced sensitivity to ABA, and ROS accumulation was significantly higher than in wild type and osaai1 under 3 µM ABA treatment. Thus, these results suggest that OsAAI1 is a positive regulator of rice yield and drought tolerance dependent on the ABA-mediated regulatory and ROS scavenging pathway.

Keywords

References

  1. Biochem J. 1990 Apr 1;267(1):1-12 [PMID: 2183790]
  2. Sci Rep. 2015 Sep 09;5:13819 [PMID: 26350634]
  3. Plant Cell. 2005 Jul;17(7):1866-75 [PMID: 15987996]
  4. Plant Sci. 2017 Mar;256:16-24 [PMID: 28167029]
  5. PLoS One. 2011;6(11):e28069 [PMID: 22140509]
  6. Biochem J. 1988 Nov 1;255(3):901-5 [PMID: 3214430]
  7. J Mol Biol. 1993 Jun 5;231(3):877-87 [PMID: 8515457]
  8. Int J Mol Sci. 2022 Nov 26;23(23): [PMID: 36499153]
  9. J Exp Bot. 2018 Mar 24;69(7):1533-1543 [PMID: 29365136]
  10. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12908-13 [PMID: 11050171]
  11. PeerJ. 2019 Aug 14;7:e7504 [PMID: 31428542]
  12. Cell Res. 2009 Oct;19(10):1205-16 [PMID: 19581937]
  13. Plant Mol Biol. 2015 Apr;87(6):555-64 [PMID: 25636203]
  14. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):12235-40 [PMID: 9342392]
  15. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:627-654 [PMID: 15012303]
  16. Plant Cell Physiol. 2018 Aug 1;59(8):1490-1499 [PMID: 29986078]
  17. Plant J. 2020 Jan;101(2):310-323 [PMID: 31536657]
  18. Antioxidants (Basel). 2020 Jul 29;9(8): [PMID: 32751256]
  19. Cell. 2016 Oct 6;167(2):313-324 [PMID: 27716505]
  20. J Protein Chem. 2000 May;19(4):249-54 [PMID: 11043929]
  21. Plant Cell. 2013 Jun;25(6):2115-31 [PMID: 23800963]
  22. Nucleic Acids Res. 2020 Jan 8;48(D1):D265-D268 [PMID: 31777944]
  23. Sci Adv. 2021 Mar 17;7(12): [PMID: 33731345]
  24. Methods Mol Biol. 2014;1166:217-24 [PMID: 24852638]
  25. Int J Mol Sci. 2020 Jun 29;21(13): [PMID: 32610484]
  26. Plants (Basel). 2022 Apr 13;11(8): [PMID: 35448790]
  27. Plant Physiol. 2010 Feb;152(2):876-90 [PMID: 20007444]
  28. Plant Physiol. 2004 Dec;136(4):4096-103 [PMID: 15557100]
  29. Anal Biochem. 2008 Dec 15;383(2):320-2 [PMID: 18682244]
  30. Plant Cell. 2006 Apr;18(4):1052-66 [PMID: 16517760]
  31. Rice (N Y). 2019 Oct 21;12(1):76 [PMID: 31637532]
  32. Curr Protoc Cell Biol. 2014 Jun 03;63:2.8.1-17 [PMID: 24894837]
  33. Front Plant Sci. 2019 Nov 28;10:1488 [PMID: 31850010]
  34. Plant Cell Physiol. 2015 Dec;56(12):2396-408 [PMID: 26491145]
  35. Annu Rev Biochem. 1991;60:73-99 [PMID: 1883207]
  36. Int J Mol Sci. 2020 Jun 11;21(11): [PMID: 32545174]
  37. J Plant Res. 2011 Jul;124(4):509-25 [PMID: 21416314]
  38. Plant Physiol. 2001 Apr;125(4):1831-41 [PMID: 11299363]
  39. Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12623-8 [PMID: 18719107]
  40. J Mol Biol. 1985 Jun 5;183(3):499-502 [PMID: 4020867]
  41. Plant Physiol Biochem. 2013 Oct;71:22-30 [PMID: 23867600]
  42. Trends Plant Sci. 2011 Jun;16(6):300-9 [PMID: 21482172]
  43. BMC Plant Biol. 2020 May 8;20(1):198 [PMID: 32384870]
  44. Plant Physiol. 2019 Apr;179(4):1861-1875 [PMID: 30723177]
  45. Plant Physiol. 2014 Oct;166(2):644-58 [PMID: 25192698]
  46. Nat Protoc. 2007;2(7):1565-72 [PMID: 17585298]
  47. PLoS One. 2015 Jan 30;10(1):e0116385 [PMID: 25635681]
  48. Trends Plant Sci. 2002 Sep;7(9):405-10 [PMID: 12234732]
  49. Curr Opin Plant Biol. 2013 May;16(2):196-204 [PMID: 23453780]
  50. PLoS One. 2013 Aug 22;8(8):e72157 [PMID: 23991056]
  51. J Exp Bot. 2014 Feb;65(2):453-64 [PMID: 24474809]
  52. J Exp Bot. 2012 Feb;63(4):1593-608 [PMID: 22291134]
  53. Int J Mol Sci. 2022 Aug 23;23(17): [PMID: 36076957]
  54. Planta. 1990 Aug;182(1):118-28 [PMID: 24197007]
  55. Plant Physiol. 2013 Mar;161(3):1517-28 [PMID: 23344905]
  56. Plant Biotechnol J. 2021 Aug;19(8):1588-1601 [PMID: 33638922]
  57. Plant J. 2001 Aug;27(4):325-33 [PMID: 11532178]
  58. J Exp Bot. 2015 Nov;66(21):6803-17 [PMID: 26261267]
  59. Antioxidants (Basel). 2022 Feb 25;11(3): [PMID: 35326109]
  60. Plant Physiol. 1997 May;114(1):161-6 [PMID: 9159947]
  61. Plant Physiol. 2004 Jul;135(3):1608-20 [PMID: 15247380]
  62. Annu Rev Plant Biol. 2004;55:373-99 [PMID: 15377225]
  63. Essays Biochem. 2015;58:29-48 [PMID: 26374885]
  64. Plant Physiol Biochem. 2004 May;42(5):355-65 [PMID: 15191737]
  65. J Exp Bot. 2021 Feb 24;72(4):1411-1431 [PMID: 33130892]
  66. Genes (Basel). 2018 Mar 12;9(3): [PMID: 29534558]
  67. PLoS One. 2014 Mar 25;9(3):e92913 [PMID: 24667379]
  68. Front Plant Sci. 2020 Jun 30;11:968 [PMID: 32695131]
  69. Science. 2009 May 22;324(5930):1064-8 [PMID: 19407143]
  70. Plant Cell. 2012 May;24(5):1815-33 [PMID: 22652060]
  71. Plant Cell. 1995 Jul;7(7):945-56 [PMID: 7640527]
  72. Annu Rev Plant Biol. 2015;66:369-92 [PMID: 25665132]
  73. Nature. 2020 Feb;578(7796):577-581 [PMID: 32076270]
  74. Plant J. 2021 Jan;105(2):307-321 [PMID: 33145840]
  75. Curr Opin Plant Biol. 2005 Aug;8(4):397-403 [PMID: 15939662]
  76. Plant Cell. 1992 Apr;4(4):413-23 [PMID: 1498600]
  77. Rice (N Y). 2019 May 27;12(1):37 [PMID: 31134357]
  78. PLoS Genet. 2018 Oct 10;14(10):e1007662 [PMID: 30303953]
  79. Plant Physiol. 1990 Mar;92(3):551-9 [PMID: 16667314]
  80. New Phytol. 2014 Mar;201(4):1121-1140 [PMID: 24188383]
  81. EMBO J. 2004 Apr 7;23(7):1647-56 [PMID: 15044947]
  82. PLoS One. 2015 Feb 03;10(2):e0116646 [PMID: 25647508]
  83. Funct Plant Biol. 2003 Mar;30(3):239-264 [PMID: 32689007]
  84. Plant Sci. 2018 Dec;277:20-32 [PMID: 30466586]
  85. Plant Cell. 2012 Feb;24(2):482-506 [PMID: 22345491]
  86. Plant Cell Environ. 2022 May;45(5):1474-1489 [PMID: 35199338]
  87. Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1947-52 [PMID: 23319637]
  88. Plant Mol Biol. 1992 Dec;20(5):821-31 [PMID: 1463822]
  89. Sci Rep. 2020 Aug 6;10(1):13287 [PMID: 32764698]
  90. Trends Plant Sci. 2004 Oct;9(10):490-8 [PMID: 15465684]
  91. J Exp Bot. 2019 Sep 24;70(18):4721-4736 [PMID: 31106831]
  92. Methods Enzymol. 1984;105:121-6 [PMID: 6727660]
  93. Plant Mol Biol. 1995 Jan;27(2):237-48 [PMID: 7888615]
  94. Plant J. 2012 Jun;70(5):831-44 [PMID: 22313226]
  95. Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6190-7 [PMID: 24753573]

Grants

  1. 201959/Wellcome Trust

Word Cloud

Created with Highcharts 10.0.0OsAAI1droughtOE19ROSosaai1ricetoleranceABAstressyieldsignificantlyscavengingoverexpressionlinemutantshowedexpressionrootenhancedtreatmentaccumulatedwildtypehigherabilityABA-mediatedregulatorypathwayaccumulationYieldDroughtstudyinvestigatedfunctionconstructingOE-OsAAI1BioinformaticsanalysisAAIgene-OsAAI1-belongsHPS_likesubfamilyAAI_LTSSsuperfamilylocalizednucleusinducedincreasedgeneosaai1-1repressedplantheightprimarylengthlateralnumbergrainsizeMoreoverphysiologicalbiochemicalanalysessensitiveDABNBTstainingrevealedlargeamountcomparedleastCATAPXGPXGRactivitieslowersuggestingimprovesenhancingalsoinducegenesenhancecontentseedlingPredictablydisplayedsensitivity3µMThusresultssuggestpositiveregulatordependentIncreasesRiceToleranceDependentABA-MediatedRegulatoryScavengingPathwayAbscisicacid

Similar Articles

Cited By