The Hitchhiker's guide to longitudinal models: A primer on model selection for repeated-measures methods.

Ethan M McCormick, Michelle L Byrne, John C Flournoy, Kathryn L Mills, Jennifer H Pfeifer
Author Information
  1. Ethan M McCormick: Methodology & Statistics Department, Institute of Psychology, Leiden University, Leiden, Netherlands; Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, United States; Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands. Electronic address: e.m.mccormick@fsw.leidenuniv.nl.
  2. Michelle L Byrne: Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia; Department of Psychology, University of Oregon, Eugene, United States.
  3. John C Flournoy: Department of Psychology, Harvard University, Cambridge, United States.
  4. Kathryn L Mills: Department of Psychology, University of Oregon, Eugene, United States.
  5. Jennifer H Pfeifer: Department of Psychology, University of Oregon, Eugene, United States.

Abstract

Longitudinal data are becoming increasingly available in developmental neuroimaging. To maximize the promise of this wealth of information on how biology, behavior, and cognition change over time, there is a need to incorporate broad and rigorous training in longitudinal methods into the repertoire of developmental neuroscientists. Fortunately, these models have an incredibly rich tradition in the broader developmental sciences that we can draw from. Here, we provide a primer on longitudinal models, written in a beginner-friendly (and slightly irreverent) manner, with a particular focus on selecting among different modeling frameworks (e.g., multilevel versus latent curve models) to build the theoretical model of development a researcher wishes to test. Our aims are three-fold: (1) lay out a heuristic framework for longitudinal model selection, (2) build a repository of references that ground each model in its tradition of methodological development and practical implementation with a focus on connecting researchers to resources outside traditional neuroimaging journals, and (3) provide practical resources in the form of a codebook companion demonstrating how to fit these models. These resources together aim to enhance training for the next generation of developmental neuroscientists by providing a solid foundation for future forays into advanced modeling applications.

Keywords

References

  1. Child Dev. 2004 Sep-Oct;75(5):1357-72 [PMID: 15369519]
  2. Psychol Methods. 2017 Sep;22(3):507-526 [PMID: 27266798]
  3. Multivariate Behav Res. 1997 Jul 1;32(3):215-53 [PMID: 26761610]
  4. Dev Cogn Neurosci. 2018 Oct;33:149-160 [PMID: 29456104]
  5. Methodology (Gott). 2008;4(1):22-36 [PMID: 20046801]
  6. Dev Neurosci. 2014;36(3-4):147-60 [PMID: 24993606]
  7. Dev Psychol. 2007 Nov;43(6):1460-73 [PMID: 18020824]
  8. Psychol Methods. 2003 Mar;8(1):16-37 [PMID: 12741671]
  9. Psychol Methods. 2009 Jun;14(2):126-49 [PMID: 19485625]
  10. Struct Equ Modeling. 2009 Oct;16(4):676-701 [PMID: 23882134]
  11. J Intern Med. 2020 Apr;287(4):373-394 [PMID: 32107805]
  12. Neuroimage. 2021 Apr 1;229:117784 [PMID: 33503482]
  13. Neuroimage. 2019 Jan 15;185:222-235 [PMID: 30315911]
  14. BMC Med Res Methodol. 2019 Mar 6;19(1):46 [PMID: 30841848]
  15. J Cogn Dev. 2010;11(2):121-136 [PMID: 21743795]
  16. Psychol Methods. 2004 Jun;9(2):220-37 [PMID: 15137890]
  17. Dev Cogn Neurosci. 2018 Aug;32:43-54 [PMID: 29567376]
  18. Nat Neurosci. 2016 Nov;19(11):1523-1536 [PMID: 27643430]
  19. Dev Cogn Neurosci. 2018 Oct;33:161-175 [PMID: 29229299]
  20. Psychol Methods. 2015 Mar;20(1):102-16 [PMID: 25822208]
  21. Multivariate Behav Res. 2016 Jul-Aug;51(4):495-518 [PMID: 27269278]
  22. Psychol Methods. 2010 Sep;15(3):209-33 [PMID: 20822249]
  23. Stat Med. 2001 Dec 30;20(24):3789-805 [PMID: 11782034]
  24. Nat Commun. 2017 Dec 19;8(1):1983 [PMID: 29259158]
  25. J Chronic Dis. 1986;39(10):831-9 [PMID: 3489727]
  26. Annu Rev Psychol. 2002;53:605-34 [PMID: 11752498]
  27. J Neurosci. 2017 Mar 22;37(12):3402-3412 [PMID: 28242797]
  28. Struct Equ Modeling. 2014;21(1):1-19 [PMID: 31360054]
  29. Soc Psychiatry Psychiatr Epidemiol. 2016 Nov;51(11):1457-1466 [PMID: 27631394]
  30. Annu Rev Psychol. 2007;58:615-37 [PMID: 16953795]
  31. Proc Natl Acad Sci U S A. 2021 Apr 27;118(17): [PMID: 33875595]
  32. Psychol Methods. 2023 Apr;28(2):359-378 [PMID: 34914474]
  33. Dev Cogn Neurosci. 2018 Oct;33:1-4 [PMID: 30384956]
  34. Neuroimage. 2021 Feb 1;226:117596 [PMID: 33248257]
  35. Neuroimage. 2016 Nov 1;141:273-281 [PMID: 27453157]
  36. Multivariate Behav Res. 2017 Sep-Oct;52(5):661-670 [PMID: 28715244]
  37. Dev Cogn Neurosci. 2018 Oct;33:99-117 [PMID: 29325701]
  38. J Neurosci. 2015 May 6;35(18):7226-38 [PMID: 25948271]
  39. Psychol Methods. 2007 Mar;12(1):23-44 [PMID: 17402810]
  40. Psychol Methods. 2024 Jun 03;: [PMID: 38829356]
  41. J Consult Clin Psychol. 2014 Oct;82(5):920-30 [PMID: 24491071]
  42. Struct Equ Modeling. 2012 Apr 1;19(2):268-292 [PMID: 23637519]
  43. Drug Alcohol Depend. 2006 Jan 4;81(1):71-81 [PMID: 16006054]
  44. Dev Cogn Neurosci. 2021 Oct;51:101001 [PMID: 34391004]
  45. Multivariate Behav Res. 2005;40(3):373-400 [PMID: 26794689]
  46. Psychol Methods. 2023 Feb;28(1):61-88 [PMID: 34694832]
  47. Neuroimage. 2010 May 1;50(4):1376-83 [PMID: 20109562]
  48. Psychol Methods. 2015 Mar;20(1):26-42 [PMID: 24885341]
  49. J Neurosci Methods. 2021 Feb 15;350:109040 [PMID: 33345945]
  50. Wiley Interdiscip Rev Cogn Sci. 2015 Jan-Feb;6(1):53-63 [PMID: 26262928]
  51. Psychol Methods. 2002 Mar;7(1):41-63 [PMID: 11928890]
  52. Psychol Aging. 2008 Dec;23(4):702-19 [PMID: 19140642]
  53. Neuroimage. 2014 Mar;88:242-51 [PMID: 24121203]
  54. Psychol Methods. 2004 Mar;9(1):30-52 [PMID: 15053718]
  55. Am J Drug Alcohol Abuse. 2011 Sep;37(5):383-91 [PMID: 21854281]
  56. Neurosci Biobehav Rev. 2016 Nov;70:135-147 [PMID: 27353570]
  57. Psychol Methods. 2005 Sep;10(3):259-284 [PMID: 16221028]
  58. Psychol Methods. 2019 Feb;24(1):20-35 [PMID: 29863377]
  59. Psychol Methods. 2023 Apr;28(2):401-421 [PMID: 34570554]
  60. Psychol Methods. 2015 Dec;20(4):470-88 [PMID: 26237507]
  61. Multivariate Behav Res. 2017 Mar-Apr;52(2):200-215 [PMID: 28010127]
  62. Psychol Aging. 2004 Jun;19(2):243-59 [PMID: 15222818]
  63. J Consult Clin Psychol. 2014 Oct;82(5):879-94 [PMID: 24364798]
  64. Neuroimage. 2018 May 15;172:194-205 [PMID: 29353072]
  65. Dev Cogn Neurosci. 2018 Oct;33:194-205 [PMID: 29158073]
  66. AAPS J. 2012 Jun;14(2):176-86 [PMID: 22350626]
  67. Multivariate Behav Res. 2013 Jan;48(1):117-43 [PMID: 26789211]
  68. Dev Cogn Neurosci. 2016 Jun;19:211-22 [PMID: 27104668]
  69. Neuroimage. 2015 Jan 1;104:138-45 [PMID: 25312772]
  70. Nat Commun. 2014 Dec 18;5:5658 [PMID: 25519467]
  71. Annu Rev Psychol. 2011;62:583-619 [PMID: 19575624]
  72. Am J Psychiatry. 2000 Feb;157(2):163-71 [PMID: 10671382]
  73. J Pediatr Psychol. 2014 Mar;39(2):151-62 [PMID: 23836191]
  74. Dev Psychol. 2008 Mar;44(2):365-80 [PMID: 18331129]
  75. Psychol Methods. 2009 Mar;14(1):6-23 [PMID: 19271845]
  76. Dev Psychol. 2011 May;47(3):739-46 [PMID: 21534657]
  77. Psychol Methods. 2009 Jun;14(2):81-100 [PMID: 19485623]
  78. J Consult Clin Psychol. 1993 Dec;61(6):929-40 [PMID: 8113494]
  79. Adv Methods Pract Psychol Sci. 2019 Mar 1;2(1):55-76 [PMID: 31463424]
  80. Psychol Methods. 2017 Sep;22(3):409-425 [PMID: 27668421]
  81. Psychol Methods. 2020 Jun;25(3):365-379 [PMID: 31613118]
  82. Stat Sci. 2009;24(2):211 [PMID: 20119502]
  83. Annu Rev Psychol. 2015 Jan 3;66:295-319 [PMID: 25089362]
  84. Annu Rev Psychol. 2009;60:577-605 [PMID: 18817479]
  85. Psychol Methods. 2000 Mar;5(1):23-43 [PMID: 10937321]
  86. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5177-80 [PMID: 19307577]
  87. Psychol Methods. 2019 Oct;24(5):637-657 [PMID: 30998041]
  88. Multivariate Behav Res. 2003 Oct 1;38(4):529-69 [PMID: 26777445]
  89. Assessment. 2021 Apr;28(3):845-857 [PMID: 31672023]
  90. Dev Psychopathol. 2003 Summer;15(3):581-612 [PMID: 14582933]
  91. Biometrics. 1994 Dec;50(4):1171-7 [PMID: 7786999]
  92. Psychol Methods. 2017 Mar;22(1):114-140 [PMID: 27149401]
  93. Psychol Methods. 2006 Jun;11(2):142-63 [PMID: 16784335]
  94. Multivariate Behav Res. 2020 Jul-Aug;55(4):568-599 [PMID: 31559890]
  95. Psychometrika. 2010 Jun;75(2):243-248 [PMID: 20640194]
  96. Dev Cogn Neurosci. 2018 Oct;33:54-72 [PMID: 29395939]
  97. Dev Cogn Neurosci. 2019 Aug;38:100675 [PMID: 31279245]
  98. Struct Equ Modeling. 2012;19(4):651-682 [PMID: 25505366]
  99. Trends Neurosci. 2017 Dec;40(12):681-690 [PMID: 29074032]
  100. Behav Res Methods. 2014 Jun;46(2):372-84 [PMID: 24114379]
  101. Psychol Methods. 2015 Mar;20(1):84-101 [PMID: 25822207]
  102. Psychoneuroendocrinology. 2018 May;91:105-114 [PMID: 29547741]
  103. Dev Psychol. 2011 Sep;47(5):1389-1409 [PMID: 21639623]
  104. Biol Psychiatry. 2020 Jul 1;88(1):63-69 [PMID: 32245576]
  105. Neuroimage. 2021 Jan 1;224:117416 [PMID: 33017652]

Grants

  1. R25 MH125545/NIMH NIH HHS

Word Cloud

Created with Highcharts 10.0.0modelsdevelopmentallongitudinalmodelresourcesLongitudinalneuroimagingtrainingmethodsneuroscientiststraditionprovideprimerfocusmodelingbuilddevelopmentselectionpracticaldatabecomingincreasinglyavailablemaximizepromisewealthinformationbiologybehaviorcognitionchangetimeneedincorporatebroadrigorousrepertoireFortunatelyincrediblyrichbroadersciencescandrawwrittenbeginner-friendlyslightlyirreverentmannerparticularselectingamongdifferentframeworksegmultilevelversuslatentcurvetheoreticalresearcherwishestestaimsthree-fold:1layheuristicframework2repositoryreferencesgroundmethodologicalimplementationconnectingresearchersoutsidetraditionaljournals3formcodebookcompaniondemonstratingfittogetheraimenhancenextgenerationprovidingsolidfoundationfutureforaysadvancedapplicationsHitchhiker'sguidemodels:repeated-measuresCovariatesDistaloutcomesMixed-effectsNonlineartrajectoriesStructuralequation

Similar Articles

Cited By