Identification of new theobromine-based derivatives as potent VEGFR-2 inhibitors: design, semi-synthesis, biological evaluation, and studies.

Ibrahim H Eissa, Reda G Yousef, Hazem Elkady, Eslam B Elkaeed, Aisha A Alsfouk, Dalal Z Husein, Ibrahim M Ibrahim, Mostafa A Elhendawy, Murrell Godfrey, Ahmed M Metwaly
Author Information
  1. Ibrahim H Eissa: Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo11884 Egypt Ibrahimeissa@azhar.edu.eg. ORCID
  2. Reda G Yousef: Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo11884 Egypt Ibrahimeissa@azhar.edu.eg.
  3. Hazem Elkady: Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo11884 Egypt Ibrahimeissa@azhar.edu.eg. ORCID
  4. Eslam B Elkaeed: Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University Riyadh 13713 Saudi Arabia. ORCID
  5. Aisha A Alsfouk: Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia.
  6. Dalal Z Husein: Chemistry Department, Faculty of Science, New Valley University El-Kharja 72511 Egypt.
  7. Ibrahim M Ibrahim: Biophysics Department, Faculty of Science, Cairo University Cairo 12613 Egypt.
  8. Mostafa A Elhendawy: Department of Chemistry and Biochemistry, University of Mississippi University MS 38677 USA.
  9. Murrell Godfrey: Department of Chemistry and Biochemistry, University of Mississippi University MS 38677 USA.
  10. Ahmed M Metwaly: Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt ametwaly@azhar.edu.eg. ORCID

Abstract

This study aimed to design anticancer theobromine derivatives inhibiting VEGFR-2. The new compounds were tested to evaluate their effectiveness against MCF-7 and HepG2 cancer cell lines. Among these compounds, 15a showed the highest cytotoxicity against HepG2, with an IC value of 0.76 μM, and significant anti-proliferative effects on MCF-7, with an IC value of 1.08 μM. Notably, the selectivity index of 15a against the two cancer cells was 98.97 and 69.64, respectively. Moreover, 15a demonstrated potent VEGFR-2 inhibitory activity (IC = 0.239 μM). Further investigations revealed that 15a induced apoptosis in HepG2 cells, significantly increasing early-stage and late-stage apoptosis percentages from 3.06% and 0.71% to 29.49% and 9.63%, respectively. It also upregulated caspase-3 and caspase-9 levels by 3.45-fold and 2.37-fold, respectively compared to control HepG2 cells. Additionally, 15a inhibited the migration and wound healing ability of HepG2 cells. Molecular docking confirmed the binding affinities of the semi-synthesized compounds to VEGFR-2, consistent with results. Several computational analyses (DFT, MD simulations, MM-GBSA, PLIP, and essential dynamics) supported the stability of the 15a-VEGFR-2 complex. Overall, the biological and computational findings suggest that compound 15a could be a promising lead compound for the development of a novel apoptotic anticancer agent.

References

  1. J Nat Prod. 2016 Mar 25;79(3):629-61 [PMID: 26852623]
  2. Molecules. 2022 Jul 19;27(14): [PMID: 35889478]
  3. J Chem Inf Model. 2018 Nov 26;58(11):2178-2182 [PMID: 30351057]
  4. J Chem Inf Comput Sci. 2003 Jan-Feb;43(1):273-87 [PMID: 12546563]
  5. Folia Biol (Praha). 1993;39(2):63-8 [PMID: 7504997]
  6. Front Chem. 2021 Sep 22;9:725135 [PMID: 34631658]
  7. RSC Adv. 2021 Aug 9;11(43):27027-27041 [PMID: 35480026]
  8. Expert Opin Ther Pat. 2017 Sep;27(9):987-1004 [PMID: 28621580]
  9. Methods Enzymol. 2006;407:597-612 [PMID: 16757355]
  10. Environ Sci Pollut Res Int. 2023 Jan;30(4):8928-8955 [PMID: 35460480]
  11. Bioorg Chem. 2021 Jul;112:104965 [PMID: 34020238]
  12. J Immunol Methods. 1994 Sep 14;174(1-2):311-20 [PMID: 8083535]
  13. Molecules. 2021 Oct 12;26(20): [PMID: 34684735]
  14. Adv Protein Chem Struct Biol. 2014;96:235-65 [PMID: 25443960]
  15. Curr Drug Metab. 2021;22(1):50-59 [PMID: 33076807]
  16. J Chem Theory Comput. 2021 Oct 12;17(10):6281-6291 [PMID: 34586825]
  17. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Dec;62(6 Pt B):8438-48 [PMID: 11138145]
  18. Oncol Rep. 1998 Mar-Apr;5(2):517-20 [PMID: 9468592]
  19. Saudi J Biol Sci. 2021 Oct;28(10):5823-5832 [PMID: 34588897]
  20. Sci Rep. 2022 Jul 27;12(1):12821 [PMID: 35896557]
  21. J Enzyme Inhib Med Chem. 2022 Dec;37(1):2206-2222 [PMID: 35980113]
  22. Cancer Res. 2008 Nov 1;68(21):8643-53 [PMID: 18974103]
  23. Anticancer Agents Med Chem. 2016;16(8):1055-1065 [PMID: 26673759]
  24. Molecules. 2022 Nov 09;27(22): [PMID: 36431818]
  25. J Chem Theory Comput. 2016 Jan 12;12(1):405-13 [PMID: 26631602]
  26. J Enzyme Inhib Med Chem. 2022 Dec;37(1):1903-1917 [PMID: 35801403]
  27. Bioorg Chem. 2021 Aug;113:105019 [PMID: 34091286]
  28. Bioorg Chem. 2021 Jul;112:104949 [PMID: 34023640]
  29. Proteins. 1993 Dec;17(4):412-25 [PMID: 8108382]
  30. Proteins. 2007 May 15;67(3):569-78 [PMID: 17348026]
  31. RSC Adv. 2021 Oct 12;11(48):30315-30328 [PMID: 35493991]
  32. J Enzyme Inhib Med Chem. 2022 Dec;37(1):1884-1902 [PMID: 35801486]
  33. J Biomol Struct Dyn. 2023 Sep-Oct;41(16):7986-8001 [PMID: 36184591]
  34. Nutr Cancer. 2014;66(3):419-23 [PMID: 24547961]
  35. J Mol Graph Model. 2009 Jun-Jul;27(8):889-99 [PMID: 19264523]
  36. Molecules. 2019 May 14;24(10): [PMID: 31091790]
  37. J Enzyme Inhib Med Chem. 2022 Dec;37(1):397-410 [PMID: 34961427]
  38. Expert Opin Drug Discov. 2021 Nov;16(11):1233-1237 [PMID: 34165011]
  39. J Enzyme Inhib Med Chem. 2022 Dec;37(1):299-314 [PMID: 34894955]
  40. CA Cancer J Clin. 2018 Nov;68(6):394-424 [PMID: 30207593]
  41. Molecules. 2021 May 10;26(9): [PMID: 34068579]
  42. Int J Mol Sci. 2022 Jul 29;23(15): [PMID: 35955547]
  43. Molecules. 2022 Sep 21;27(19): [PMID: 36234734]
  44. Eur J Med Chem. 2014 Apr 22;77:400-8 [PMID: 24681028]
  45. J Enzyme Inhib Med Chem. 2022 Dec;37(1):1389-1403 [PMID: 35577416]
  46. Nat Med. 2000 May;6(5):500-2 [PMID: 10802697]
  47. J Cheminform. 2021 Sep 25;13(1):72 [PMID: 34563256]
  48. Nucleic Acids Res. 2015 Jul 1;43(W1):W443-7 [PMID: 25873628]

Word Cloud

Created with Highcharts 10.0.015aHepG2VEGFR-2cellscompoundsIC0μMrespectivelydesignanticancerderivativesnewMCF-7cancervaluepotentapoptosis3computationalbiologicalcompoundstudyaimedtheobromineinhibitingtestedevaluateeffectivenesscelllinesAmongshowedhighestcytotoxicity76significantanti-proliferativeeffects108Notablyselectivityindextwo98976964Moreoverdemonstratedinhibitoryactivity=239investigationsrevealedinducedsignificantlyincreasingearly-stagelate-stagepercentages06%71%2949%963%alsoupregulatedcaspase-3caspase-9levels45-fold237-foldcomparedcontrolAdditionallyinhibitedmigrationwoundhealingabilityMoleculardockingconfirmedbindingaffinitiessemi-synthesizedconsistentresultsSeveralanalysesDFTMDsimulationsMM-GBSAPLIPessentialdynamicssupportedstability15a-VEGFR-2complexOverallfindingssuggestpromisingleaddevelopmentnovelapoptoticagentIdentificationtheobromine-basedinhibitors:semi-synthesisevaluationstudies

Similar Articles

Cited By