Mutant HTT does not affect glial development but impairs myelination in the early disease stage.

Sitong Yang, Jingjing Ma, Han Zhang, Laiqiang Chen, Yuxuan Li, Mingtian Pan, Hongcheng Zhu, Jun Liang, Dajian He, Shihua Li, Xiao-Jiang Li, Xiangyu Guo
Author Information
  1. Sitong Yang: Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
  2. Jingjing Ma: Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
  3. Han Zhang: Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
  4. Laiqiang Chen: Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
  5. Yuxuan Li: Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
  6. Mingtian Pan: Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
  7. Hongcheng Zhu: Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
  8. Jun Liang: Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
  9. Dajian He: Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
  10. Shihua Li: Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
  11. Xiao-Jiang Li: Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.
  12. Xiangyu Guo: Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.

Abstract

Introduction: Huntington's disease (HD) is caused by expanded CAG repeats in the huntingtin gene (HTT) and is characterized by late-onset neurodegeneration that primarily affects the striatum. Several studies have shown that mutant HTT can also affect neuronal development, contributing to the late-onset neurodegeneration. However, it is currently unclear whether mutant HTT impairs the development of glial cells, which is important for understanding whether mutant HTT affects glial cells during early brain development.
Methods: Using HD knock-in mice that express full-length mutant HTT with a 140 glutamine repeat at the endogenous level, we analyzed the numbers of astrocytes and oligodendrocytes from postnatal day 1 to 3 months of age via Western blotting and immunocytochemistry. We also performed electron microscopy, RNAseq analysis, and quantitative RT-PCR.
Results: The numbers of astrocytes and oligodendrocytes were not significantly altered in postnatal HD KI mice compared to wild type (WT) mice. Consistently, glial protein expression levels were not significantly different between HD KI and WT mice. However, at 3 months of age, myelin protein expression was reduced in HD KI mice, as evidenced by Western blotting and immunocytochemical results. Electron microscopy revealed a slight but significant reduction in myelin thickness of axons in the HD KI mouse brain at 3 months of age. RNAseq analysis did not show significant reductions in myelin-related genes in postnatal HD KI mice.
Conclusion: These data suggest that cytoplasmic mutant HTT, rather than nuclear mutant HTT, mediates myelination defects in the early stages of the disease without impacting the differentiation and maturation of glial cells.

Keywords

References

  1. Front Cell Dev Biol. 2021 Mar 08;9:653101 [PMID: 33763430]
  2. J Neurosci. 2014 Jul 23;34(30):10034-40 [PMID: 25057205]
  3. Hum Mol Genet. 2016 Jul 1;25(13):2621-2632 [PMID: 27126634]
  4. Nat Genet. 2009 Jul;41(7):854-8 [PMID: 19503091]
  5. Cells. 2022 Oct 26;11(21): [PMID: 36359783]
  6. Front Cell Neurosci. 2013 Sep 27;7:169 [PMID: 24098271]
  7. Neurobiol Aging. 2014 Oct;35(10):2382-93 [PMID: 24906892]
  8. Nat Rev Dis Primers. 2015 Apr 23;1:15005 [PMID: 27188817]
  9. Brain Res Bull. 2022 Jun 1;183:49-56 [PMID: 35227768]
  10. Science. 2020 Aug 14;369(6505):787-793 [PMID: 32675289]
  11. Science. 2018 Oct 12;362(6411):181-185 [PMID: 30309945]
  12. Nat Neurosci. 2016 Apr;19(4):623-33 [PMID: 26900923]
  13. J Neurosci. 2014 Jul 9;34(28):9455-72 [PMID: 25009276]
  14. Science. 2022 Nov 4;378(6619):eadc9020 [PMID: 36378959]
  15. Hum Mol Genet. 2012 Jan 15;21(2):406-20 [PMID: 21997870]
  16. Mol Neurobiol. 2003 Dec;28(3):259-76 [PMID: 14709789]
  17. Neuroimage Clin. 2018 Feb 19;20:236-242 [PMID: 30090698]
  18. Neuroscience. 2019 Apr 1;403:79-92 [PMID: 28579146]
  19. Nat Neurosci. 2022 Sep;25(9):1163-1178 [PMID: 36042312]
  20. Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22480-5 [PMID: 20018729]
  21. J Cell Biol. 2011 Mar 7;192(5):797-811 [PMID: 21357748]
  22. Proc Natl Acad Sci U S A. 2016 May 17;113(20):5736-41 [PMID: 27140644]
  23. J Huntingtons Dis. 2021;10(3):377-384 [PMID: 34366364]
  24. Neuron. 2015 Mar 18;85(6):1212-26 [PMID: 25789755]
  25. Front Mol Neurosci. 2016 Apr 21;9:27 [PMID: 27147961]
  26. C R Biol. 2022 Dec 08;345(2):77-90 [PMID: 36847466]
  27. Neuron. 2016 Mar 2;89(5):910-26 [PMID: 26938440]
  28. Front Genet. 2021 Oct 15;12:751033 [PMID: 34721539]
  29. J Huntingtons Dis. 2020;9(3):217-229 [PMID: 32925079]
  30. Bioinformatics. 2016 Sep 15;32(18):2847-9 [PMID: 27207943]
  31. Lancet Neurol. 2011 Jan;10(1):83-98 [PMID: 21163446]
  32. EMBO Rep. 2020 Jun 4;21(6):e49783 [PMID: 32270922]
  33. Acta Neuropathol. 2021 Mar;141(3):399-413 [PMID: 33517535]
  34. Neuron. 2022 Jan 5;110(1):36-50.e5 [PMID: 34793694]
  35. Mol Neurobiol. 2018 Apr;55(4):3351-3371 [PMID: 28497201]
  36. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  37. Neuroimage Clin. 2020;26:102211 [PMID: 32113174]
  38. Cell Mol Life Sci. 2011 Jun;68(12):2003-12 [PMID: 21207100]
  39. Nat Rev Neurosci. 2017 Nov 16;18(12):753-769 [PMID: 29142295]
  40. J Neurosci Res. 2019 Dec;97(12):1624-1635 [PMID: 31353533]
  41. Sci Transl Med. 2019 Oct 16;11(514): [PMID: 31619545]
  42. Nat Commun. 2021 Mar 5;12(1):1461 [PMID: 33674575]
  43. Nat Rev Neurosci. 2023 Aug;24(8):474-486 [PMID: 37258632]
  44. Nat Rev Neurosci. 2013 Jan;14(1):7-23 [PMID: 23254191]
  45. Neuron. 2010 Aug 12;67(3):392-406 [PMID: 20696378]
  46. ACS Chem Neurosci. 2014 Jul 16;5(7):494-6 [PMID: 24842291]
  47. Cell Rep. 2022 Feb 22;38(8):110416 [PMID: 35196485]
  48. Nat Rev Neurosci. 2001 Mar;2(3):185-93 [PMID: 11256079]
  49. J Biol Chem. 2010 Apr 2;285(14):10653-61 [PMID: 20145253]
  50. BMC Bioinformatics. 2013 Jan 16;14:7 [PMID: 23323831]
  51. Nat Rev Neurol. 2021 Mar;17(3):132 [PMID: 33564184]
  52. Nat Commun. 2020 May 22;11(1):2582 [PMID: 32444599]
  53. Nat Rev Drug Discov. 2022 May;21(5):339-358 [PMID: 35173313]
  54. Proc Natl Acad Sci U S A. 2019 May 7;116(19):9622-9627 [PMID: 31015293]
  55. J Physiol. 2017 Mar 15;595(6):1903-1916 [PMID: 27381164]
  56. Nat Methods. 2017 Apr;14(4):417-419 [PMID: 28263959]
  57. Glia. 2023 Jun;71(6):1383-1401 [PMID: 36799296]
  58. Biochim Biophys Acta Mol Basis Dis. 2019 Jun 1;1865(6):1428-1435 [PMID: 30802639]
  59. Nat Rev Neurol. 2014 Apr;10(4):204-16 [PMID: 24614516]
  60. J Cell Biol. 2005 Dec 19;171(6):1001-12 [PMID: 16365166]

Word Cloud

Created with Highcharts 10.0.0HTTHDmutantmicedevelopmentglialKIdiseasecellsearlypostnatal3 monthsagelate-onsetneurodegenerationaffectsalsoaffectHoweverwhetherimpairsbrainnumbersastrocytesoligodendrocytesWesternblottingmicroscopyRNAseqanalysissignificantlyWTproteinexpressionmyelinsignificantmyelinationIntroduction:Huntington'scausedexpandedCAGrepeatshuntingtingenecharacterizedprimarilystriatumSeveralstudiesshowncanneuronalcontributingcurrentlyunclearimportantunderstandingMethods:Usingknock-inexpressfull-length140glutaminerepeatendogenouslevelanalyzedday1viaimmunocytochemistryperformedelectronquantitativeRT-PCRResults:alteredcomparedwildtypeConsistentlylevelsdifferentreducedevidencedimmunocytochemicalresultsElectronrevealedslightreductionthicknessaxonsmouseshowreductionsmyelin-relatedgenesConclusion:datasuggestcytoplasmicrathernuclearmediatesdefectsstageswithoutimpactingdifferentiationmaturationMutantstageHuntington’sdemyelinationgliaoligodendrocyte

Similar Articles

Cited By