Removing maternal heat stress abatement during gestation modulated postnatal physiology and improved performance of Bos indicus-influenced beef offspring.

Vinicius S Izquierdo, João V L Silva, Juliana Ranches, Giovanna C M Santos, Jeffery A Carroll, Nicole C Burdick Sanchez, João H J Bittar, João M B Vendramini, Philipe Moriel
Author Information
  1. Vinicius S Izquierdo: IFAS - Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA. ORCID
  2. João V L Silva: IFAS - Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA. ORCID
  3. Juliana Ranches: Eastern Oregon Agricultural Research Center, Oregon State University, Burns, OR 97720, USA. ORCID
  4. Giovanna C M Santos: IFAS - Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA.
  5. Jeffery A Carroll: Livestock Issues Research Unit, ARS-USDA, Lubbock, TX 79403, USA.
  6. Nicole C Burdick Sanchez: Livestock Issues Research Unit, ARS-USDA, Lubbock, TX 79403, USA. ORCID
  7. João H J Bittar: College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA. ORCID
  8. João M B Vendramini: IFAS - Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA. ORCID
  9. Philipe Moriel: IFAS - Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA. ORCID

Abstract

This study evaluated the growth and immune response of beef calves born from Bos indicus-influenced beef heifers provided pre- and postpartum heat abatement on pasture. On 83 ± 4 d prepartum (day 0), 64 Brangus crossbred beef heifers (~¼ B. indicus) were stratified by body weight (BW; 454 ± 37 kg) and body condition score (BCS; 6.3 ± 0.28; scale 1 to 9), and then allocated into 1 of 16 bahiagrass pastures (1 ha and 4 heifers per pasture). Treatments were randomly assigned to pastures (8 pastures per treatment) and consisted of heifers provided (SH) or not (NSH) access to artificial shade (4.5 m2 of shade area per heifer) from 83 d prepartum to 50 d postpartum (days 0 to 133). Heifers and calves were managed similarly from day 133 until the start of the breeding season (day 203). Calves were weaned on day 203 (at 119 ± 19 d of age), limit-fed the same drylot diet at 3.5% of BW (DM basis) days 209 to 268 (3 to 4 calves per pen; 8 pens per treatment) and vaccinated against respiratory disease pathogens on days 222 and 236. Heifer intravaginal temperatures from days 35 to 42 were lower (P ≤ 0.03) for NSH vs. SH heifers from 0000 to 0800 hours but greater (P ≤ 0.05) for NSH vs. SH heifers from 1100 to 1800 hours. Heifer intravaginal temperature from days 126 to 132 did not differ (P = 0.99) between NSH and SH heifers. Heifers assigned to NSH had greater respiration rates from days 20 to 96 (P ≤ 0.0007), greater plasma concentration of cortisol on days 35 (P = 0.07) and 55 (P = 0.02), less plasma concentration of insulin-like growth factor 1 (IGF-1) on days 35 (P = 0.10), 55, and 133 (P ≤ 0.05), and less BCS from days 55 to 203 (P ≤ 0.01) compared to SH heifers. Calves born from NSH heifers had less birth BW (P = 0.05), greater overall plasma haptoglobin concentrations (P = 0.05), greater seroconversion against bovine respiratory syncytial virus on day 222 (P = 0.02), tended to have greater ADG from days 209 to 268 (P = 0.07), and had greater BW on day 268 (P = 0.05) compared to SH offspring. Plasma concentrations of cortisol and serum titers against other respiratory disease pathogens did not differ (P ≥ 0.15) between NSH and SH offspring. Hence, removing maternal access to artificial shade: (1) increased prepartum intravaginal temperature and plasma concentrations of cortisol but reduced prepartum BCS and plasma concentrations of IGF-1 in grazing B. indicus-influenced beef heifers; and (2) increased post-weaning BW gain and had positive effects on humoral immune response of their offspring.

Keywords

References

  1. Theriogenology. 2020 Jul 1;150:471-479 [PMID: 32278591]
  2. Animals (Basel). 2019 Jun 06;9(6): [PMID: 31174286]
  3. J Dairy Sci. 2010 Jan;93(1):170-9 [PMID: 20059916]
  4. Transl Anim Sci. 2022 Apr 15;6(2):txac045 [PMID: 35599844]
  5. J Therm Biol. 2019 Jan;79:42-49 [PMID: 30612684]
  6. PLoS One. 2021 Jun 4;16(6):e0252474 [PMID: 34086766]
  7. J Dairy Sci. 2022 Nov;105(11):8898-8910 [PMID: 36085111]
  8. J Anim Sci. 2010 Dec;88(12):4056-67 [PMID: 20709874]
  9. J Anim Sci. 2020 Feb 1;98(2): [PMID: 31955200]
  10. J Anim Sci. 2020 May 1;98(5): [PMID: 32315036]
  11. J Anim Sci. 2012 Jul;90(7):2371-80 [PMID: 22266994]
  12. Endocrinology. 2006 Jul;147(7):3344-55 [PMID: 16556757]
  13. J Anim Sci. 2016 Jun;94(6):2542-52 [PMID: 27285930]
  14. J Anim Sci. 2011 Sep;89(9):2911-25 [PMID: 21478450]
  15. Animal. 2010 Jul;4(7):1167-83 [PMID: 22444615]
  16. JDS Commun. 2021 Jun 03;2(5):295-299 [PMID: 36338391]
  17. J Dairy Sci. 2017 Nov;100(11):8645-8657 [PMID: 28918147]
  18. J Anim Sci. 2021 Feb 1;99(2): [PMID: 33211852]
  19. J Anim Sci. 2018 Feb 15;96(1):318-330 [PMID: 29378006]
  20. Endocrinology. 1990 Mar;126(3):1569-75 [PMID: 1689654]
  21. J Anim Sci. 2017 Aug;95(8):3497-3503 [PMID: 28805919]
  22. J Dairy Sci. 2009 Jan;92(1):109-16 [PMID: 19109269]
  23. Health Lab Sci. 1970 Jan;7(1):42-52 [PMID: 4313274]
  24. Trop Anim Health Prod. 2020 May;52(3):1527-1532 [PMID: 31758386]
  25. Int J Biometeorol. 2008 Jan;52(3):199-208 [PMID: 17578605]
  26. Animal. 2014 Mar;8(3):470-6 [PMID: 24423406]
  27. Meat Sci. 2020 Jun;164:108095 [PMID: 32135453]
  28. J Therm Biol. 2019 Jan;79:120-134 [PMID: 30612672]
  29. J Anim Sci. 2003 May;81(5):1136-41 [PMID: 12772839]
  30. Anim Sci J. 2011 Aug;82(4):591-600 [PMID: 21794020]
  31. Animal. 2019 Sep;13(9):2044-2051 [PMID: 30722806]
  32. J Dairy Sci. 2012 Dec;95(12):7128-36 [PMID: 23021751]
  33. J Dairy Res. 2021 May;88(2):147-153 [PMID: 33926583]
  34. J Anim Sci. 1988 Mar;66(3):603-12 [PMID: 3378920]
  35. Int J Biometeorol. 2014 Sep;58(7):1443-50 [PMID: 24122341]
  36. PLoS One. 2019 Oct 1;14(10):e0223190 [PMID: 31574119]
  37. J Anim Sci. 2013 Apr;91(4):1831-7 [PMID: 23345563]
  38. Animals (Basel). 2017 May 02;7(5): [PMID: 28468329]
  39. J Anim Sci. 2001 Sep;79(9):2327-35 [PMID: 11583419]
  40. J Anim Sci. 2022 Apr 1;100(4): [PMID: 35366307]
  41. Int J Biometeorol. 2018 Apr;62(4):585-595 [PMID: 29150763]
  42. J Anim Physiol Anim Nutr (Berl). 2016 Jun;100(3):401-12 [PMID: 26250521]
  43. J Dairy Sci. 2016 Apr;99(4):3193-3198 [PMID: 26805989]
  44. Horm Res. 2006;65 Suppl 3:28-33 [PMID: 16612111]
  45. J Anim Sci. 2019 Jul 30;97(8):3246-3252 [PMID: 31214688]
  46. Animals (Basel). 2022 Dec 08;12(24): [PMID: 36552393]
  47. Transl Anim Sci. 2021 Mar 20;5(2):txab053 [PMID: 34386711]
  48. Annu Rev Anim Biosci. 2013 Jan;1:311-37 [PMID: 25387022]
  49. J Anim Sci. 2005 Apr;83(4):933-9 [PMID: 15753350]
  50. J Anim Sci. 2011 Jan;89(1):252-7 [PMID: 20870951]
  51. J Dairy Sci. 2015 Oct;98(10):6865-75 [PMID: 26233442]
  52. Theriogenology. 2020 Sep 15;154:110-119 [PMID: 32540511]
  53. J Dairy Sci. 2017 Apr;100(4):2976-2984 [PMID: 28131582]
  54. Transl Anim Sci. 2021 Jul 07;5(3):txab097 [PMID: 34250451]
  55. Anim Front. 2021 Dec 17;11(6):48-56 [PMID: 34934529]
  56. Anim Reprod Sci. 2004 Jul;82-83:349-60 [PMID: 15271465]
  57. J Anim Sci. 2020 May 1;98(5): [PMID: 32309862]
  58. J Anim Sci. 2012 Jun;90(6):1855-65 [PMID: 22205665]
  59. J Anim Sci. 2016 Feb;94(2):602-9 [PMID: 27065130]
  60. J Anim Sci. 2019 Oct 3;97(10):4085-4092 [PMID: 31396618]
  61. J Anim Sci. 2007 Oct;85(10):2367-74 [PMID: 17565067]
  62. Vet Clin North Am Food Anim Pract. 1995 Nov;11(3):615-25 [PMID: 8581866]
  63. J Dairy Sci. 2014 Oct;97(10):6426-39 [PMID: 25108869]
  64. J Anim Sci. 2013 Dec;91(12):5838-47 [PMID: 24085408]
  65. J Anim Physiol Anim Nutr (Berl). 2013 Jun;97(3):531-6 [PMID: 22487219]
  66. J Dairy Sci. 2020 Aug;103(8):7555-7568 [PMID: 32534930]
  67. PLoS One. 2014 Nov 10;9(11):e110859 [PMID: 25383953]
  68. Trop Anim Health Prod. 2011 Mar;43(3):609-15 [PMID: 21104127]

MeSH Term

Pregnancy
Cattle
Animals
Female
Insulin-Like Growth Factor I
Hydrocortisone
Plant Breeding
Diet
Parturition
Animal Feed

Chemicals

Insulin-Like Growth Factor I
Hydrocortisone

Word Cloud

Created with Highcharts 10.0.0heifersdaysP = 0SHNSHgreaterbeefdayprepartumBW1perP ≤ 005plasmadconcentrationsoffspringcalvesBosindicus-influencedheatBCSpastures4artificialshade133203268respiratoryintravaginal35cortisol55lessgrowthimmuneresponsebornprovidedpostpartumabatementpasture0Bindicusbodyassigned8treatmentaccessHeifersCalves3209diseasepathogens222Heifervshourstemperaturedifferconcentration0702IGF-1comparedmaternalincreasedstressstudyevaluatedpre-83 ± 464Branguscrossbredstratifiedweight454 ± 37kgconditionscore63 ± 028scale9allocated16bahiagrasshaTreatmentsrandomlyconsisted5m2areaheifer8350managedsimilarlystartbreedingseasonweaned119 ± 19agelimit-feddrylotdiet5%DMbasispenpensvaccinated236temperatures42lower03000008001100180012613299respirationrates20960007insulin-likefactor1001birthoverallhaptoglobinseroconversionbovinesyncytialvirustendedADGPlasmaserumtitersP ≥ 015Henceremovingshade:reducedgrazing2post-weaninggainpositiveeffectshumoralRemovinggestationmodulatedpostnatalphysiologyimprovedperformance

Similar Articles

Cited By