SGIP1 in axons prevents internalization of desensitized CB1R and modifies its function.

Oleh Durydivka, Ken Mackie, Jaroslav Blahos
Author Information
  1. Oleh Durydivka: Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia.
  2. Ken Mackie: Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States.
  3. Jaroslav Blahos: Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia.

Abstract

In the central nervous system (CNS), cannabinoid receptor 1 (CB1R) is preferentially expressed in axons where it has a unique property, namely resistance to agonist-driven endocytosis. This review aims to summarize what we know about molecular mechanisms of CB1R cell surface stability in axonal compartments, how these impact CB1R signaling, and to consider their physiological consequences. This review then focuses on a potential candidate for maintaining axonal CB1R at the cell surface, Src homology 3-domain growth factor receptor-bound 2-like endophilin interacting protein 1 (SGIP1). SGIP1 may contribute to the polarized distribution of CB1R and modify its signaling in axons. In addition, deletion of SGIP1 results in discrete behavioral changes in modalities controlled by the endocannabinoid system . Several drugs acting directly via CB1R have important therapeutic potential, however their adverse effects limit their clinical use. Future studies might reveal chemical approaches to target the SGIP1-CB1R interaction, with the aim to exploit the endocannabinoid system pharmaceutically in a discrete way, with minimized undesired consequences.

Keywords

References

  1. FASEB J. 2008 Jul;22(7):2311-22 [PMID: 18267983]
  2. J Neurosci. 2014 Apr 9;34(15):5152-63 [PMID: 24719095]
  3. Int J Obes (Lond). 2012 Feb;36(2):201-6 [PMID: 21407171]
  4. J Neurochem. 2017 May;141(4):577-591 [PMID: 28295323]
  5. Neuropsychopharmacology. 2016 Jan;41(1):80-102 [PMID: 26068727]
  6. Neuropharmacology. 2016 Aug;107:201-214 [PMID: 26970018]
  7. Biol Psychiatry. 2016 May 15;79(10):858-868 [PMID: 25981172]
  8. Biochem Biophys Res Commun. 2010 Nov 12;402(2):408-13 [PMID: 20946875]
  9. Curr Opin Neurobiol. 2014 Dec;29:1-8 [PMID: 24747340]
  10. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5780-5 [PMID: 10318961]
  11. J Neurosci. 2015 Oct 14;35(41):13975-88 [PMID: 26468198]
  12. Pharmacol Ther. 2013 Apr;138(1):18-37 [PMID: 23261685]
  13. Elife. 2019 Apr 30;8: [PMID: 31036155]
  14. Curr Med Chem. 2010;17(14):1382-93 [PMID: 20166926]
  15. Annu Rev Psychol. 2013;64:21-47 [PMID: 22804774]
  16. Structure. 2007 Jul;15(7):839-52 [PMID: 17540576]
  17. Biol Psychiatry. 2007 Nov 15;62(10):1103-10 [PMID: 17511970]
  18. J Biol Chem. 2007 Sep 7;282(36):26481-9 [PMID: 17626015]
  19. Elife. 2014 Oct 10;3: [PMID: 25303365]
  20. Clin Exp Pharmacol Physiol. 2007 May-Jun;34(5-6):439-49 [PMID: 17439413]
  21. Biol Psychiatry. 2012 Apr 15;71(8):714-24 [PMID: 22264443]
  22. Mol Pharmacol. 2016 Jun;89(6):618-29 [PMID: 27009233]
  23. Mol Pharmacol. 2007 Dec;72(6):1557-66 [PMID: 17895407]
  24. Nat Rev Neurosci. 2015 Dec;16(12):705-18 [PMID: 26585799]
  25. Neuropsychopharmacology. 2010 May;35(6):1363-73 [PMID: 20164830]
  26. Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18596-601 [PMID: 19015531]
  27. Prog Mol Biol Transl Sci. 2015;132:1-14 [PMID: 26055052]
  28. Neurosci Lett. 2011 Oct 10;503(3):224-8 [PMID: 21896317]
  29. Nature. 2007 Jan 11;445(7124):168-76 [PMID: 17151600]
  30. Annu Rev Physiol. 2007;69:451-82 [PMID: 17037978]
  31. J Pharmacol Exp Ther. 1998 Dec;287(3):1038-47 [PMID: 9864290]
  32. Neuron. 2016 May 4;90(3):564-80 [PMID: 27151641]
  33. Ann Agric Environ Med. 2016 Sep 27;23(4):618-624 [PMID: 28030933]
  34. Nat Neurosci. 2015 Jan;18(1):75-86 [PMID: 25485758]
  35. Front Mol Neurosci. 2018 Jul 05;11:230 [PMID: 30026687]
  36. J Neurosci. 2015 Jul 08;35(27):10039-57 [PMID: 26157003]
  37. Mol Pharmacol. 2005 May;67(5):1697-704 [PMID: 15710746]
  38. Neurochem Int. 2008 Jun;52(8):1402-9 [PMID: 18407377]
  39. Behav Pharmacol. 2008 Jul;19(4):298-307 [PMID: 18622177]
  40. Science. 2014 May 30;344(6187):1023-8 [PMID: 24876496]
  41. Neuropharmacology. 2008 Jan;54(1):141-50 [PMID: 17709120]
  42. Elife. 2014 Oct 10;3: [PMID: 25303366]
  43. Front Mol Neurosci. 2020 Jun 12;13:108 [PMID: 32595453]
  44. Br J Pharmacol. 2019 Jul;176(14):2593-2607 [PMID: 30945265]
  45. Front Synaptic Neurosci. 2021 Nov 23;13:790773 [PMID: 34887741]
  46. Front Pharmacol. 2017 Oct 04;8:695 [PMID: 29046638]
  47. J Neurochem. 1999 Aug;73(2):493-501 [PMID: 10428044]
  48. Mol Pharmacol. 2016 Nov;90(5):620-626 [PMID: 27338082]
  49. Nat Commun. 2014 Aug 01;5:4589 [PMID: 25081814]
  50. J Biol Chem. 2008 Apr 25;283(17):11424-34 [PMID: 18319252]
  51. Cereb Cortex. 2013 Nov;23(11):2581-91 [PMID: 22892424]
  52. Br J Pharmacol. 1971 Feb;41(2):424P-425P [PMID: 5103093]
  53. J Neurosci. 1999 May 15;19(10):3773-80 [PMID: 10234009]
  54. Br J Pharmacol. 2021 Apr;178(7):1588-1604 [PMID: 33491188]
  55. Nat Cell Biol. 2017 Apr;19(4):352-361 [PMID: 28346440]
  56. J Neurosci. 1998 Apr 15;18(8):2834-41 [PMID: 9526000]
  57. Front Cell Neurosci. 2021 Dec 09;15:786597 [PMID: 34955755]
  58. Physiol Rev. 2009 Jan;89(1):309-80 [PMID: 19126760]
  59. Int J Mol Sci. 2019 Apr 13;20(8): [PMID: 31013934]
  60. Science. 1999 Jan 15;283(5400):401-4 [PMID: 9888857]
  61. J Biol Chem. 1998 Jan 9;273(2):685-8 [PMID: 9422717]
  62. Br J Pharmacol. 2006 Jun;148(4):387-95 [PMID: 16682964]
  63. Neuropharmacology. 2017 Sep 15;124:105-120 [PMID: 28625720]
  64. Sci Rep. 2019 May 29;9(1):8000 [PMID: 31142762]
  65. Biochemistry. 2011 Mar 29;50(12):2223-34 [PMID: 21306178]
  66. J Am Chem Soc. 2010 Apr 7;132(13):4556-7 [PMID: 20235547]
  67. Endocrinology. 2005 Sep;146(9):3757-64 [PMID: 15919751]
  68. Nat Struct Mol Biol. 2022 Apr;29(4):339-347 [PMID: 35347313]
  69. Nat Med. 2003 Jan;9(1):76-81 [PMID: 12461523]
  70. Addict Biol. 2008 Jun;13(2):213-24 [PMID: 18482431]
  71. Nature. 2016 Nov 24;539(7630):555-559 [PMID: 27828947]
  72. J Neurosci. 2001 Apr 1;21(7):2425-33 [PMID: 11264316]
  73. Mol Cell Endocrinol. 2013 Jun 15;372(1-2):116-27 [PMID: 23541635]
  74. J Neurochem. 2008 Feb;104(4):1132-43 [PMID: 17986216]
  75. Br J Pharmacol. 2012 Apr;165(8):2652-9 [PMID: 22014214]
  76. Pain. 2021 Jul 1;162(Suppl 1):S5-S25 [PMID: 33729211]
  77. Mol Pharmacol. 2017 Feb;91(2):75-86 [PMID: 27895162]
  78. FEBS Lett. 2007 Oct 16;581(25):5009-16 [PMID: 17910957]
  79. Cell Rep. 2020 Sep 15;32(11):108132 [PMID: 32937123]
  80. Molecules. 2021 Sep 06;26(17): [PMID: 34500853]
  81. Nature. 2002 Aug 1;418(6897):530-4 [PMID: 12152079]
  82. Front Synaptic Neurosci. 2021 Dec 22;13:796498 [PMID: 35002671]
  83. Psychopharmacology (Berl). 2018 Nov;235(11):3211-3221 [PMID: 30251159]
  84. J Biol Chem. 2004 Aug 20;279(34):36013-21 [PMID: 15210689]
  85. Br J Pharmacol. 2015 Sep;172(17):4419-29 [PMID: 26075589]
  86. FASEB J. 2007 Mar;21(3):802-11 [PMID: 17197383]
  87. J Neurosci. 2018 Feb 28;38(9):2135-2145 [PMID: 29378864]
  88. Cell Signal. 2015 Mar;27(3):716-726 [PMID: 25446256]
  89. J Neurochem. 2022 Mar;160(6):625-642 [PMID: 34970999]
  90. J Neurochem. 1995 Jan;64(1):424-9 [PMID: 7798942]
  91. J Neurosci. 2006 Mar 22;26(12):3141-53 [PMID: 16554465]
  92. J Biol Chem. 2004 Jun 11;279(24):25430-9 [PMID: 15073168]
  93. Dev Cell. 2016 Jun 6;37(5):428-43 [PMID: 27237791]
  94. Cell Rep. 2014 Dec 11;9(5):1644-1653 [PMID: 25466252]
  95. Mol Pharmacol. 2007 Apr;71(4):976-84 [PMID: 17182888]
  96. J Neurochem. 2008 Jul;106(1):70-82 [PMID: 18331587]

Word Cloud

Created with Highcharts 10.0.0CB1RSGIP1system1axonscannabinoidreceptorendocytosisreviewcellsurfaceaxonalsignalingconsequencespotentialdiscreteendocannabinoidinternalizationcentralnervousCNSpreferentiallyexpresseduniquepropertynamelyresistanceagonist-drivenaimssummarizeknowmolecularmechanismsstabilitycompartmentsimpactconsiderphysiologicalfocusescandidatemaintainingSrchomology3-domaingrowthfactorreceptor-bound2-likeendophilininteractingproteinmaycontributepolarizeddistributionmodifyadditiondeletionresultsbehavioralchangesmodalitiescontrolledSeveraldrugsactingdirectlyviaimportanttherapeutichoweveradverseeffectslimitclinicaluseFuturestudiesmightrevealchemicalapproachestargetSGIP1-CB1Rinteractionaimexploitpharmaceuticallywayminimizedundesiredpreventsdesensitizedmodifiesfunctionaxonenrichmentclathrin-mediatedsynaptictransmission

Similar Articles

Cited By