Genomic insights into biased allele loss and increased gene numbers after genome duplication in autotetraploid Cyclocarya paliurus.

Rui-Min Yu, Ning Zhang, Bo-Wen Zhang, Yu Liang, Xiao-Xu Pang, Lei Cao, Yi-Dan Chen, Wei-Ping Zhang, Yang Yang, Da-Yong Zhang, Er-Li Pang, Wei-Ning Bai
Author Information
  1. Rui-Min Yu: State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
  2. Ning Zhang: State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
  3. Bo-Wen Zhang: State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
  4. Yu Liang: State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
  5. Xiao-Xu Pang: State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
  6. Lei Cao: State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
  7. Yi-Dan Chen: State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
  8. Wei-Ping Zhang: State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
  9. Yang Yang: State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
  10. Da-Yong Zhang: State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China. zhangdy@bnu.edu.cn.
  11. Er-Li Pang: State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China. pangerli@bnu.edu.cn.
  12. Wei-Ning Bai: State Key Laboratory of Earth Surface Processes and Resource Ecology, and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China. baiwn@bnu.edu.cn. ORCID

Abstract

BACKGROUND: Autopolyploidy is a valuable model for studying whole-genome duplication (WGD) without hybridization, yet little is known about the genomic structural and functional changes that occur in autopolyploids after WGD. Cyclocarya paliurus (Juglandaceae) is a natural diploid-autotetraploid species. We generated an allele-aware autotetraploid genome, a chimeric chromosome-level diploid genome, and whole-genome resequencing data for 106 autotetraploid individuals at an average depth of 60 × per individual, along with 12 diploid individuals at an average depth of 90 × per individual.
RESULTS: Autotetraploid C. paliurus had 64 chromosomes clustered into 16 homologous groups, and the majority of homologous chromosomes demonstrated similar chromosome length, gene numbers, and expression. The regions of synteny, structural variation and nonalignment to the diploid genome accounted for 81.3%, 8.8% and 9.9% of the autotetraploid genome, respectively. Our analyses identified 20,626 genes (69.18%) with four alleles and 9191 genes (30.82%) with one, two, or three alleles, suggesting post-polyploid allelic loss. Genes with allelic loss were found to occur more often in proximity to or within structural variations and exhibited a marked overlap with transposable elements. Additionally, such genes showed a reduced tendency to interact with other genes. We also found 102 genes with more than four copies in the autotetraploid genome, and their expression levels were significantly higher than their diploid counterparts. These genes were enriched in enzymes involved in stress response and plant defense, potentially contributing to the evolutionary success of autotetraploids. Our population genomic analyses suggested a single origin of autotetraploids and recent divergence (~ 0.57 Mya) from diploids, with minimal interploidy admixture.
CONCLUSIONS: Our results indicate the potential for genomic and functional reorganization, which may contribute to evolutionary success in autotetraploid C. paliurus.

Keywords

References

  1. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  2. Nucleic Acids Res. 2018 Nov 30;46(21):e126 [PMID: 30107434]
  3. Genome Res. 2002 Aug;12(8):1269-76 [PMID: 12176934]
  4. Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):361-6 [PMID: 24368850]
  5. Plant Physiol. 2018 Feb;176(2):1410-1422 [PMID: 29233850]
  6. Plant Biotechnol J. 2019 Jul;17(7):1394-1407 [PMID: 30578709]
  7. Plant Biotechnol J. 2019 Feb;17(2):397-409 [PMID: 29992702]
  8. Mol Biol Evol. 2022 Jan 7;39(1): [PMID: 34687315]
  9. Curr Protoc Bioinformatics. 2004 May;Chapter 4:Unit 4.10 [PMID: 18428725]
  10. Nat Genet. 2018 Nov;50(11):1565-1573 [PMID: 30297971]
  11. Bioinformatics. 2014 Sep 1;30(17):i541-8 [PMID: 25161245]
  12. Innovation (Camb). 2021 Jul 01;2(3):100141 [PMID: 34557778]
  13. Nat Plants. 2019 Aug;5(8):833-845 [PMID: 31383970]
  14. Nucleic Acids Res. 2012 Apr;40(7):e49 [PMID: 22217600]
  15. New Phytol. 2006;171(4):875-86 [PMID: 16918557]
  16. Nucleic Acids Res. 2003 Jan 1;31(1):258-61 [PMID: 12519996]
  17. Curr Biol. 2018 Apr 23;28(8):1246-1256.e12 [PMID: 29657119]
  18. Bioinformatics. 2008 Mar 1;24(5):637-44 [PMID: 18218656]
  19. Gigascience. 2022 Jun 28;11: [PMID: 35764602]
  20. Nucleic Acids Res. 2016 May 19;44(9):e89 [PMID: 26893356]
  21. Genome Res. 2005 Nov;15(11):1566-75 [PMID: 16251466]
  22. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  23. Mol Biol Evol. 2021 Aug 23;38(9):3910-3924 [PMID: 33783509]
  24. Cell. 2007 Nov 2;131(3):452-62 [PMID: 17981114]
  25. Bioinformatics. 2017 Aug 15;33(16):2583-2585 [PMID: 28398459]
  26. Plant Physiol. 2006 Jul;141(3):910-23 [PMID: 16679420]
  27. J Exp Bot. 2016 Jan;67(1):421-34 [PMID: 26512059]
  28. BMC Bioinformatics. 2006 Sep 12;7:409 [PMID: 16968531]
  29. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  30. New Phytol. 2007;174(3):669-682 [PMID: 17447921]
  31. Nucleic Acids Res. 1997 Mar 1;25(5):955-64 [PMID: 9023104]
  32. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  33. Heredity (Edinb). 2015 Nov;115(5):426-36 [PMID: 25990878]
  34. New Phytol. 2010 Apr;186(1):5-17 [PMID: 20070540]
  35. Bioinformatics. 2005 Jun;21 Suppl 1:i351-8 [PMID: 15961478]
  36. Am J Bot. 2014 Oct;101(10):1711-25 [PMID: 25090999]
  37. Genome Res. 2004 May;14(5):988-95 [PMID: 15123596]
  38. Nat Rev Genet. 2016 Jul;17(7):379-91 [PMID: 27087500]
  39. Nat Biotechnol. 2019 Aug;37(8):907-915 [PMID: 31375807]
  40. Genome Biol. 2019 Dec 16;20(1):277 [PMID: 31842948]
  41. Nat Commun. 2018 Jul 6;9(1):2638 [PMID: 29980662]
  42. Nat Commun. 2020 Jul 6;11(1):3375 [PMID: 32632155]
  43. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  44. Chromosome Res. 2014 Jun;22(2):117-34 [PMID: 24788061]
  45. Adv Genet. 1947;1:403-29 [PMID: 20259289]
  46. Nat Genet. 2022 Jun;54(6):885-896 [PMID: 35654976]
  47. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 [PMID: 9862982]
  48. Biosci Biotechnol Biochem. 2003 Apr;67(4):877-80 [PMID: 12784631]
  49. Nat Rev Genet. 2017 Jul;18(7):411-424 [PMID: 28502977]
  50. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W609-12 [PMID: 16845082]
  51. Evolution. 1989 May;43(3):650-656 [PMID: 28568380]
  52. Nucleic Acids Res. 2003 Oct 1;31(19):5654-66 [PMID: 14500829]
  53. Nat Commun. 2021 Jun 10;12(1):3531 [PMID: 34112794]
  54. Bioinformatics. 2019 May 15;35(10):1786-1788 [PMID: 30321304]
  55. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7719-23 [PMID: 7644483]
  56. BMC Bioinformatics. 2018 Nov 29;19(1):460 [PMID: 30497373]
  57. Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9451-9457 [PMID: 32300014]
  58. Nat Biotechnol. 2015 Mar;33(3):290-5 [PMID: 25690850]
  59. Curr Biol. 2013 Nov 4;23(21):2151-6 [PMID: 24139735]
  60. Genetics. 2003 Nov;165(3):1533-40 [PMID: 14668400]
  61. Nucleic Acids Res. 2015 Jul 13;43(12):e78 [PMID: 25870408]
  62. Am J Bot. 2003 Mar;90(3):339-46 [PMID: 21659125]
  63. Genome Biol. 2017 Jun 14;18(1):111 [PMID: 28615063]
  64. BMC Bioinformatics. 2008 Jan 14;9:18 [PMID: 18194517]
  65. Mol Plant. 2020 Jan 6;13(1):59-71 [PMID: 31678615]
  66. Nat Commun. 2023 Feb 4;14(1):617 [PMID: 36739280]
  67. Bioinformatics. 2016 Jun 15;32(12):1895-7 [PMID: 27153702]
  68. Bioinformatics. 2016 Jul 1;32(13):1933-42 [PMID: 27153688]
  69. PLoS Genet. 2012;8(12):e1003093 [PMID: 23284289]
  70. Nat Genet. 2022 Mar;54(3):342-348 [PMID: 35241824]
  71. Hereditas. 2000;133(3):255-61 [PMID: 11433970]
  72. Curr Opin Plant Biol. 2016 Apr;30:159-65 [PMID: 27064530]
  73. Annu Rev Plant Biol. 2009;60:433-53 [PMID: 19575588]
  74. New Phytol. 2016 Apr;210(2):391-8 [PMID: 26439879]
  75. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  76. Bioinformatics. 2005 May 1;21(9):1859-75 [PMID: 15728110]
  77. Nat Commun. 2020 May 19;11(1):2494 [PMID: 32427850]
  78. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  79. J Genet Genomics. 2023 May 26;: [PMID: 37245652]
  80. Genome Res. 2006 Jun;16(6):738-49 [PMID: 16702410]
  81. J Integr Plant Biol. 2018 Sep;60(9):780-795 [PMID: 29667328]
  82. Nat Methods. 2021 Feb;18(2):170-175 [PMID: 33526886]
  83. Mol Biol Evol. 2015 Jun;32(6):1382-95 [PMID: 25862142]
  84. Nat Ecol Evol. 2019 Mar;3(3):457-468 [PMID: 30804518]
  85. Fitoterapia. 2011 Oct;82(7):1081-5 [PMID: 21784137]
  86. Plant Physiol. 2016 Aug;171(4):2294-316 [PMID: 27288366]
  87. Hortic Res. 2019 Mar 25;6:55 [PMID: 30937174]
  88. New Phytol. 2018 Mar;217(4):1726-1736 [PMID: 29178135]
  89. Nature. 2011 May 5;473(7345):97-100 [PMID: 21478875]
  90. Curr Opin Plant Biol. 2014 Jun;19:91-8 [PMID: 24907529]
  91. Heredity (Edinb). 2014 Apr;112(4):415-27 [PMID: 24398883]
  92. PLoS Comput Biol. 2018 Jan 26;14(1):e1005944 [PMID: 29373581]
  93. Bioinformatics. 2002 Feb;18(2):337-8 [PMID: 11847089]
  94. Front Plant Sci. 2014 Oct 16;5:556 [PMID: 25360143]
  95. Science. 2010 Mar 5;327(5970):1214-8 [PMID: 20203042]
  96. J Mol Biol. 1997 Apr 25;268(1):78-94 [PMID: 9149143]
  97. BMC Bioinformatics. 2014 Nov 25;15:356 [PMID: 25420514]
  98. Nature. 2008 Jan 17;451(7176):279-83 [PMID: 18202643]
  99. Mol Biol Evol. 2006 May;23(5):887-92 [PMID: 16368775]
  100. New Phytol. 2021 Oct;232(1):388-403 [PMID: 34143496]
  101. Trends Plant Sci. 2018 Jul;23(7):623-637 [PMID: 29735429]
  102. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  103. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  104. Nat Methods. 2016 Dec;13(12):1050-1054 [PMID: 27749838]
  105. Nat Biotechnol. 2013 Dec;31(12):1119-25 [PMID: 24185095]
  106. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8 [PMID: 17485477]
  107. Genome Biol. 2008 Jan 11;9(1):R7 [PMID: 18190707]
  108. PLoS Genet. 2013 Oct;9(10):e1003905 [PMID: 24204310]
  109. Genomics Proteomics Bioinformatics. 2023 Feb 11;: [PMID: 36775057]
  110. Mol Biol Evol. 2013 Aug;30(8):1987-97 [PMID: 23709260]
  111. Genetics. 2008 Aug;179(4):2319-24 [PMID: 18689880]
  112. Plant Mol Biol. 2011 Mar;75(4-5):481-95 [PMID: 21298397]
  113. Nat Commun. 2014 May 23;5:3930 [PMID: 24852848]
  114. Genome Biol. 2015 Dec 01;16:259 [PMID: 26619908]
  115. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D140-4 [PMID: 16381832]
  116. J Asian Nat Prod Res. 2006 Jan-Mar;8(1-2):93-8 [PMID: 16753788]
  117. J Comput Biol. 1998 Winter;5(4):681-702 [PMID: 10072084]
  118. Plant Biotechnol (Tokyo). 2018 Jun 25;35(2):155-159 [PMID: 31819717]
  119. Mol Ecol Resour. 2019 Jul;19(4):970-981 [PMID: 30681281]
  120. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D121-4 [PMID: 15608160]
  121. Genetics. 1989 Nov;123(3):585-95 [PMID: 2513255]
  122. Nature. 2011 Jul 13;475(7357):493-6 [PMID: 21753753]
  123. Bioinformatics. 2004 Nov 1;20(16):2878-9 [PMID: 15145805]
  124. Plant Cell Physiol. 2015 Jan;56(1):7-15 [PMID: 25189343]
  125. Trends Genet. 2003 Mar;19(3):141-7 [PMID: 12615008]
  126. Methods Mol Biol. 2016;1374:339-61 [PMID: 26519415]
  127. BMC Bioinformatics. 2004 May 14;5:59 [PMID: 15144565]
  128. Genetics. 2008 Aug;179(4):2113-23 [PMID: 18689891]

MeSH Term

Humans
Alleles
Tetraploidy
Gene Duplication
Polyploidy
Genomics

Word Cloud

Created with Highcharts 10.0.0autotetraploidgenomegenespaliurusdiploidlossduplicationgenomicstructuralAutopolyploidywhole-genomeWGDfunctionaloccurCyclocaryaindividualsaveragedepthindividualCchromosomeshomologouschromosomegenenumbersexpressionanalysesfourallelesallelicfoundevolutionarysuccessautotetraploidsdivergenceBACKGROUND:valuablemodelstudyingwithouthybridizationyetlittleknownchangesautopolyploidsJuglandaceaenaturaldiploid-autotetraploidspeciesgeneratedallele-awarechimericchromosome-levelresequencingdata10660 × peralong1290 × perRESULTS:Autotetraploid64clustered16groupsmajoritydemonstratedsimilarlengthregionssyntenyvariationnonalignmentaccounted813%88%99%respectivelyidentified206266918%91913082%onetwothreesuggestingpost-polyploidGenesoftenproximitywithinvariationsexhibitedmarkedoverlaptransposableelementsAdditionallyshowedreducedtendencyinteractalso102copieslevelssignificantlyhighercounterpartsenrichedenzymesinvolvedstressresponseplantdefensepotentiallycontributingpopulationsuggestedsingleoriginrecent~ 057MyadiploidsminimalinterploidyadmixtureCONCLUSIONS:resultsindicatepotentialreorganizationmaycontributeGenomicinsightsbiasedalleleincreasedAlleleAllelicShallowTetrasomicinheritanceWhole-genome

Similar Articles

Cited By (1)