Autotaxin production in the human breast cancer tumor microenvironment mitigates tumor progression in early breast cancers.

Matthew Gk Benesch, Rongrong Wu, Xiaoyun Tang, David N Brindley, Takashi Ishikawa, Kazuaki Takabe
Author Information
  1. Matthew Gk Benesch: Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center Buffalo, New York 14263, USA.
  2. Rongrong Wu: Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center Buffalo, New York 14263, USA.
  3. Xiaoyun Tang: Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta Edmonton, Alberta T6G 2H7, Canada.
  4. David N Brindley: Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta Edmonton, Alberta T6G 2H7, Canada.
  5. Takashi Ishikawa: Department of Breast Surgery and Oncology, Tokyo Medical University Tokyo 160-8402, Japan.
  6. Kazuaki Takabe: Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center Buffalo, New York 14263, USA.

Abstract

Autotaxin (ATX) is a secreted enzyme that produces extracellular lysophosphatidate in physiological wound healing. ATX is overexpressed in many cancers to promote growth, metastasis, and treatment resistance. However, ATX expression is very low in breast cancer cells, and is instead secreted by the tumor microenvironment (TME). Paracrine ATX expression, and its effects on tumor progression, has not been robustly studied in human breast tumors. In this study, ATX expression was analyzed in over 5000 non-metastatic breast cancers from databases TCGA, METABRIC and GSE96058, dichotomized by the median. Gene set enrichment analysis (GSEA) and the xCell algorithm investigated biological functions of ATX and correlation to TME cell populations. TME ATX production was verified by single cell RNA sequencing. The highest ATX expression occurred in endothelial cells and cancer-associated fibroblasts (<0.0001). High tumor ATX expression correlated to increased adipocyte, fibroblast, and endothelial cell fractions (<0.01), and GSEA demonstrated enriched immune system, tumor suppressor, pro-survival, stemness, and pro-inflammatory signaling in multiple gene sets. Tumor mutational burden was decreased, Ki67 scores were decreased, tumor infiltrating immune cell populations increased, and immune cytolytic activity scores increased (all <0.01) for ATX-high tumors. Overall survival trends favored ATX-high tumors (hazard ratios 0.75-0.80). In summary, in human breast cancers, ATX is produced by the TME, and in non-metastatic tumors, high levels correlate with an anti-tumor phenotype. Because pre-clinical models use aggressive pro-metastatic cell lines where ATX-mediated signaling promotes tumorigenesis, further research is required to verify an anti-to-pro-tumor phenotype switch with breast cancer progression and/or treatment resistance.

Keywords

References

  1. J Lipid Res. 2015 Jun;56(6):1134-44 [PMID: 25896349]
  2. Pharmaceutics. 2020 Dec 09;12(12): [PMID: 33316872]
  3. Cancers (Basel). 2022 Nov 04;14(21): [PMID: 36358855]
  4. Hum Pathol. 2022 May;123:84-92 [PMID: 35218811]
  5. Dev Dyn. 2011 Feb;240(2):413-21 [PMID: 21246658]
  6. Nat Genet. 2021 Sep;53(9):1334-1347 [PMID: 34493872]
  7. Mol Cancer Ther. 2009 Jan;8(1):249-60 [PMID: 19139135]
  8. Am J Cancer Res. 2022 Oct 15;12(10):4840-4852 [PMID: 36381329]
  9. Theranostics. 2022 Jul 18;12(13):5675-5690 [PMID: 35966578]
  10. Sci Rep. 2016 Feb 17;6:21164 [PMID: 26883574]
  11. JAMA Oncol. 2021 Feb 1;7(2):316 [PMID: 33331847]
  12. Cell. 2011 Mar 4;144(5):646-74 [PMID: 21376230]
  13. J Lipid Res. 2015 Nov;56(11):2048-60 [PMID: 25814022]
  14. Anticancer Res. 2018 Dec;38(12):6631-6638 [PMID: 30504371]
  15. Cancers (Basel). 2020 Oct 30;12(11): [PMID: 33143115]
  16. Anticancer Res. 2002 Mar-Apr;22(2A):733-40 [PMID: 12014644]
  17. J Biol Chem. 2006 Apr 7;281(14):9297-306 [PMID: 16467304]
  18. CA Cancer J Clin. 2022 Jan;72(1):7-33 [PMID: 35020204]
  19. J Cancer. 2012;3:175-83 [PMID: 22514560]
  20. Trends Cancer. 2017 Nov;3(11):748-752 [PMID: 29120750]
  21. FASEB J. 2019 Feb;33(2):1899-1910 [PMID: 30192654]
  22. N Engl J Med. 1986 Dec 25;315(26):1650-9 [PMID: 3537791]
  23. Handb Exp Pharmacol. 2020;259:205-218 [PMID: 32086667]
  24. ACS Med Chem Lett. 2020 May 14;11(6):1335-1341 [PMID: 32551021]
  25. Clin Pharmacol Drug Dev. 2022 Feb;11(2):246-256 [PMID: 34633152]
  26. Toxicol Lett. 2009 Jan 10;184(1):26-32 [PMID: 19028555]
  27. FASEB J. 2015 Mar;29(3):772-85 [PMID: 25398768]
  28. BMJ Open Respir Res. 2019 May 21;6(1):e000422 [PMID: 31179008]
  29. Am J Cancer Res. 2021 Sep 15;11(9):4408-4420 [PMID: 34659895]
  30. Expert Opin Ther Pat. 2021 May;31(5):421-434 [PMID: 33342311]
  31. J Cell Biochem. 2004 Aug 1;92(5):900-12 [PMID: 15258914]
  32. Mol Carcinog. 2009 Sep;48(9):801-9 [PMID: 19204929]
  33. Cancers (Basel). 2018 Mar 15;10(3): [PMID: 29543710]
  34. FASEB J. 2017 Sep;31(9):4064-4077 [PMID: 28539367]
  35. Carcinogenesis. 2009 Jul;30(7):1073-81 [PMID: 19468060]
  36. Cancers (Basel). 2020 Feb 06;12(2): [PMID: 32041123]
  37. J Biol Chem. 2002 Oct 18;277(42):39436-42 [PMID: 12176993]
  38. Medicine (Baltimore). 2019 Mar;98(13):e14973 [PMID: 30921203]
  39. Int J Mol Sci. 2020 Aug 18;21(16): [PMID: 32824846]
  40. Theranostics. 2019 Aug 14;9(21):6129-6142 [PMID: 31534541]
  41. Nat Genet. 2013 Jun;45(6):580-5 [PMID: 23715323]
  42. Cell Syst. 2015 Dec 23;1(6):417-425 [PMID: 26771021]
  43. FASEB J. 2014 Jun;28(6):2655-66 [PMID: 24599971]
  44. Receptors Clin Investig. 2015;2(1): [PMID: 26005700]
  45. Am J Cancer Res. 2021 Nov 15;11(11):5743-5755 [PMID: 34873491]
  46. Int J Mol Sci. 2022 Mar 28;23(7): [PMID: 35409077]
  47. Immunity. 2018 Apr 17;48(4):812-830.e14 [PMID: 29628290]
  48. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  49. Mol Cell Biol. 2006 Jul;26(13):5015-22 [PMID: 16782887]
  50. Oncogene. 2009 Feb 19;28(7):1028-39 [PMID: 19079345]
  51. Cancer Cell. 2009 Jun 2;15(6):539-50 [PMID: 19477432]
  52. Gland Surg. 2021 Jan;10(1):154-165 [PMID: 33633972]
  53. Arch Pharm (Weinheim). 2013 Feb;346(2):91-7 [PMID: 23300119]
  54. BMC Cancer. 2019 Nov 12;19(1):1091 [PMID: 31718602]
  55. FASEB J. 2015 Sep;29(9):3990-4000 [PMID: 26071407]
  56. Cancers (Basel). 2020 Apr 18;12(4): [PMID: 32325715]
  57. Cell Cycle. 2009 Nov 15;8(22):3695-701 [PMID: 19855166]
  58. Pharmaceuticals (Basel). 2021 Nov 22;14(11): [PMID: 34832985]
  59. Neuro Oncol. 2010 Sep;12(9):991-1003 [PMID: 20484145]
  60. Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Aug;1865(8):158716 [PMID: 32305571]
  61. EMBO J. 2020 Oct 1;39(19):e104063 [PMID: 32790115]
  62. J Biol Chem. 1992 Feb 5;267(4):2524-9 [PMID: 1733949]
  63. FEBS Lett. 2014 Aug 19;588(16):2712-27 [PMID: 24560789]
  64. Am J Cancer Res. 2022 Nov 15;12(11):5271-5285 [PMID: 36504906]
  65. Biochimie. 2011 Jan;93(1):61-70 [PMID: 20709140]
  66. Br J Cancer. 2010 Mar 16;102(6):941-6 [PMID: 20234370]
  67. Gynecol Oncol. 2005 Jun;97(3):870-8 [PMID: 15919106]
  68. Cancers (Basel). 2020 Oct 19;12(10): [PMID: 33086518]
  69. Tumour Biol. 2012 Dec;33(6):2237-43 [PMID: 22922883]
  70. Clin Exp Metastasis. 2002;19(7):603-8 [PMID: 12498389]
  71. Genome Biol. 2017 Nov 15;18(1):220 [PMID: 29141660]
  72. J Cell Biol. 2002 Jul 22;158(2):227-33 [PMID: 12119361]

Grants

  1. R37 CA248018/NCI NIH HHS
  2. P30 CA016056/NCI NIH HHS
  3. R01 CA251545/NCI NIH HHS
  4. R01 CA250412/NCI NIH HHS
  5. R01 EB029596/NIBIB NIH HHS

Word Cloud

Created with Highcharts 10.0.0ATXtumorbreastexpressioncellcancersTMEprogressiontumorscancerhuman<0increasedimmuneAutotaxinsecretedtreatmentresistancecellsmicroenvironmentnon-metastaticGSEApopulationsproductionendothelial01signalingdecreasedscoresATX-highphenotypeenzymeproducesextracellularlysophosphatidatephysiologicalwoundhealingoverexpressedmanypromotegrowthmetastasisHoweverlowinsteadParacrineeffectsrobustlystudiedstudyanalyzed5000databasesTCGAMETABRICGSE96058dichotomizedmedianGenesetenrichmentanalysisxCellalgorithminvestigatedbiologicalfunctionscorrelationverifiedsingleRNAsequencinghighestoccurredcancer-associatedfibroblasts0001Highcorrelatedadipocytefibroblastfractionsdemonstratedenrichedsystemsuppressorpro-survivalstemnesspro-inflammatorymultiplegenesetsTumormutationalburdenKi67infiltratingcytolyticactivityOverallsurvivaltrendsfavoredhazardratios075-080summaryproducedhighlevelscorrelateanti-tumorpre-clinicalmodelsuseaggressivepro-metastaticlinesATX-mediatedpromotestumorigenesisresearchrequiredverifyanti-to-pro-tumorswitchand/ormitigatesearlyAdiposetissueadjuvanttherapycytokineslysophosphatidicacidnoveltherapeutics

Similar Articles

Cited By