Machine learning-assisted flexible wearable device for tyrosine detection.

Qiwen Bao, Gang Li, Wenbo Cheng, Zhengchun Yang, Zilian Qu, Jun Wei, Ling Lin
Author Information
  1. Qiwen Bao: School of Precision Instrument and Optoelectronic Engineering, The State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University 92 Weijin Road Tianjin 300072 China linling@tju.edu.cn.
  2. Gang Li: School of Precision Instrument and Optoelectronic Engineering, The State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University 92 Weijin Road Tianjin 300072 China linling@tju.edu.cn.
  3. Wenbo Cheng: Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences Suzhou 215163 P. R. China.
  4. Zhengchun Yang: School of Electrical and Electronic Engineering, Tianjin Key Laboratory of Film Electronic & Communication Devices, Advanced Materials and Printed Electronics Center, Tianjin University of Technology Tianjin 300384 China. ORCID
  5. Zilian Qu: Beijing Informat Technol Coll Beijing 100015 P. R. China.
  6. Jun Wei: School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen 518055 China. ORCID
  7. Ling Lin: School of Precision Instrument and Optoelectronic Engineering, The State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University 92 Weijin Road Tianjin 300072 China linling@tju.edu.cn. ORCID

Abstract

Early diagnosis of pathological markers can significantly shorten the rate of viral transmission, reduce the probability of infection, and improve the cure rate of diseases. Therefore, analytical techniques for identifying pathological markers and environmental toxicants have received considerable attention from researchers worldwide. However, the most popular techniques used in clinical settings involve expensive precision instruments and complex detection processes. Thus, a simpler, more efficient, rapid, and intelligent means of analysis must be urgently developed. Electrochemical biosensors have the advantages of simple processing, low cost, low sample preparation requirements, rapid analysis, easy miniaturization, and integration. Thus, they have become popular in extensive research. Machine learning is widely used in material-assisted synthesis, sensor design, and other fields owing to its powerful data analysis and simulation learning capabilities. In this study, a machine learning-assisted carbon black-graphene oxide conjugate polymer (CB-GO/CP) electrode, in conjunction with a flexible wearable device, is proposed for the smart portable detection of tyrosine (Tyr). Input feature value data are obtained for the artificial neural network (ANN) and support vector machines (SVM) model learning multiple data collections in artificial urine and by recording the pH and temperature values. The results reveal that a machine-learning model that integrates multiple external factors is more accurate for the prediction of Tyr concentration.

References

  1. Angew Chem Int Ed Engl. 2022 Feb 1;61(6):e202109005 [PMID: 34633119]
  2. ACS Omega. 2021 Nov 16;6(47):32072-32080 [PMID: 34870028]
  3. Biosens Bioelectron. 2020 Aug 1;161:112222 [PMID: 32365010]
  4. Sci Adv. 2021 May 21;7(21): [PMID: 34020961]
  5. Sensors (Basel). 2020 Mar 05;20(5): [PMID: 32150916]
  6. Anal Chem. 2020 Jul 7;92(13):9295-9304 [PMID: 32469524]
  7. Nat Med. 2020 Mar;26(3):418-429 [PMID: 32161411]
  8. Essays Biochem. 2016 Jun 30;60(1):1-8 [PMID: 27365030]
  9. Biosens Bioelectron. 2019 Jan 15;124-125:143-149 [PMID: 30366259]
  10. Chemosphere. 2022 Feb;289:133116 [PMID: 34848220]
  11. ACS Nano. 2020 May 26;14(5):5268-5277 [PMID: 32281785]
  12. Biosens Bioelectron. 2021 Feb 15;174:112831 [PMID: 33288426]
  13. Cogn Neurodyn. 2023 Jun;17(3):803-811 [PMID: 34777628]
  14. Nanomaterials (Basel). 2021 May 25;11(6): [PMID: 34070421]
  15. Mikrochim Acta. 2020 Aug 2;187(8):479 [PMID: 32740774]
  16. Anal Chim Acta. 2022 Nov 1;1232:340447 [PMID: 36257734]

Word Cloud

Created with Highcharts 10.0.0detectionanalysislearningdatapathologicalmarkersratetechniquespopularusedThusrapidlowMachinelearning-assistedflexiblewearabledevicetyrosineTyrartificialmodelmultipleEarlydiagnosiscansignificantlyshortenviraltransmissionreduceprobabilityinfectionimprovecurediseasesThereforeanalyticalidentifyingenvironmentaltoxicantsreceivedconsiderableattentionresearchersworldwideHoweverclinicalsettingsinvolveexpensiveprecisioninstrumentscomplexprocessessimplerefficientintelligentmeansmusturgentlydevelopedElectrochemicalbiosensorsadvantagessimpleprocessingcostsamplepreparationrequirementseasyminiaturizationintegrationbecomeextensiveresearchwidelymaterial-assistedsynthesissensordesignfieldsowingpowerfulsimulationcapabilitiesstudymachinecarbonblack-grapheneoxideconjugatepolymerCB-GO/CPelectrodeconjunctionproposedsmartportableInputfeaturevalueobtainedneuralnetworkANNsupportvectormachinesSVMcollectionsurinerecordingpHtemperaturevaluesresultsrevealmachine-learningintegratesexternalfactorsaccuratepredictionconcentration

Similar Articles

Cited By