Combining a parsimonious mathematical model with infection data from tailor-made experiments to understand environmental transmission.

Anna M Gamża, Thomas J Hagenaars, Miriam G J Koene, Mart C M de Jong
Author Information
  1. Anna M Gamża: Quantitative Veterinary Epidemiology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands. anna.gamza@ed.ac.uk.
  2. Thomas J Hagenaars: Wageningen Bioveterinary Research, Wageningen University and Research, 8221 RA, Lelystad, The Netherlands. thomas.hagenaars@wur.nl.
  3. Miriam G J Koene: Wageningen Bioveterinary Research, Wageningen University and Research, 8221 RA, Lelystad, The Netherlands.
  4. Mart C M de Jong: Quantitative Veterinary Epidemiology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands. mart.dejong@wur.nl.

Abstract

Although most infections are transmitted through the environment, the processes underlying the environmental stage of transmission are still poorly understood for most systems. Improved understanding of the environmental transmission dynamics is important for effective non-pharmaceutical intervention strategies. To study the mechanisms underlying environmental transmission we formulated a parsimonious modelling framework including hypothesised mechanisms of pathogen dispersion and decay. To calibrate and validate the model, we conducted a series of experiments studying distance-dependent transmission of Campylobacter jejuni in broilers. We obtained informative simultaneous estimates for all three model parameters: the parameter of C. jejuni inactivation, the diffusion coefficient describing pathogen dispersion, and the transmission rate parameter. The time and distance dependence of transmission in the fitted model is quantitatively consistent with marked spatiotemporal patterns in the experimental observations. These results, for C. jejuni in broilers, show that the application of our modelling framework to suitable transmission data can provide mechanistic insight in environmental pathogen transmission.

References

  1. Trop Med Infect Dis. 2021 Aug 05;6(3): [PMID: 34449728]
  2. J Appl Microbiol. 2006 Apr;100(4):623-32 [PMID: 16553716]
  3. Health Care Manag Sci. 2015 Sep;18(3):318-33 [PMID: 25578039]
  4. Lancet Planet Health. 2021 Jul;5(7):e466-e478 [PMID: 34245717]
  5. Transbound Emerg Dis. 2018 May;65 Suppl 1:30-48 [PMID: 29663680]
  6. Vet Microbiol. 2004 Apr 19;99(3-4):259-67 [PMID: 15066728]
  7. Science. 2012 Jun 22;336(6088):1534-41 [PMID: 22723413]
  8. Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3556-60 [PMID: 24550476]
  9. Int J Food Microbiol. 2003 Oct 15;87(1-2):75-86 [PMID: 12927709]
  10. J Appl Microbiol. 2016 Apr;120(4):1108-18 [PMID: 26788933]
  11. Bull Math Biol. 2020 May 10;82(5):58 [PMID: 32390107]
  12. Int J Health Geogr. 2014 Oct 28;13:45 [PMID: 25352091]
  13. Interface Focus. 2020 Feb 6;10(1):20190056 [PMID: 31897293]
  14. Res Microbiol. 2007 Apr;158(3):195-202 [PMID: 17350808]
  15. Epidemiol Infect. 2007 Feb;135(2):202-17 [PMID: 17291360]
  16. ISRN Microbiol. 2013 Sep 26;2013:703813 [PMID: 24191231]
  17. Math Biosci Eng. 2020 Apr 27;17(4):3294-3328 [PMID: 32987531]
  18. Math Biosci Eng. 2010 Jan;7(1):51-66 [PMID: 20104948]
  19. Math Biosci Eng. 2019 Apr 2;16(4):2852-2874 [PMID: 31137240]
  20. Environ Sci Technol. 2017 Feb 21;51(4):2186-2196 [PMID: 28112914]
  21. Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2386-E2392 [PMID: 29463703]
  22. Sci Rep. 2023 Aug 10;13(1):12986 [PMID: 37563156]
  23. Nat Commun. 2020 Aug 18;11(1):4062 [PMID: 32811826]
  24. PLoS Comput Biol. 2017 Apr 7;13(4):e1005481 [PMID: 28388665]
  25. FEMS Microbiol Lett. 2014 Jul;356(1):8-19 [PMID: 24888326]
  26. Vet Res. 2013 Oct 28;44:102 [PMID: 24165278]
  27. BMC Infect Dis. 2020 Oct 28;20(1):799 [PMID: 33115427]
  28. Avian Dis. 1998 Jan-Mar;42(1):45-52 [PMID: 9533080]
  29. J Occup Environ Hyg. 2021 Oct-Nov;18(10-11):495-509 [PMID: 34515602]
  30. BMC Infect Dis. 2001;1:1 [PMID: 11208258]
  31. Int J Health Geogr. 2015 Apr 01;14:14 [PMID: 25888858]
  32. Front Microbiol. 2020 Jan 10;10:2920 [PMID: 31998253]
  33. PLoS One. 2018 Oct 10;13(10):e0205418 [PMID: 30304002]
  34. PLoS One. 2011;6(5):e19896 [PMID: 21603638]
  35. EFSA J. 2020 Apr 30;18(4):e06090 [PMID: 32874298]
  36. J Theor Biol. 2013 May 7;324:84-102 [PMID: 23333764]
  37. BMC Vet Res. 2012 Jul 25;8:123 [PMID: 22831274]
  38. Parasit Vectors. 2020 Jul 24;13(1):372 [PMID: 32709250]
  39. PLoS Comput Biol. 2009 Apr;5(4):e1000346 [PMID: 19360126]
  40. Int J Infect Dis. 2002 Dec;6 Suppl 3:3S16-20; discussion 3S20-1, 3S53-8 [PMID: 23570169]

MeSH Term

Animals
Campylobacter Infections
Chickens
Campylobacter jejuni
Models, Theoretical
Poultry Diseases

Word Cloud

Created with Highcharts 10.0.0transmissionenvironmentalmodelpathogenjejuniunderlyingmechanismsparsimoniousmodellingframeworkdispersionexperimentsbroilersparameterCdataAlthoughinfectionstransmittedenvironmentprocessesstagestillpoorlyunderstoodsystemsImprovedunderstandingdynamicsimportanteffectivenon-pharmaceuticalinterventionstrategiesstudyformulatedincludinghypothesiseddecaycalibratevalidateconductedseriesstudyingdistance-dependentCampylobacterobtainedinformativesimultaneousestimatesthreeparameters:inactivationdiffusioncoefficientdescribingratetimedistancedependencefittedquantitativelyconsistentmarkedspatiotemporalpatternsexperimentalobservationsresultsshowapplicationsuitablecanprovidemechanisticinsightCombiningmathematicalinfectiontailor-madeunderstand

Similar Articles

Cited By