Wet-Adaptive Electronic Skin.

Fan Chen, Qiuna Zhuang, Yichun Ding, Chi Zhang, Xian Song, Zijian Chen, Yaokang Zhang, Quanjin Mei, Xin Zhao, Qiyao Huang, Zijian Zheng
Author Information
  1. Fan Chen: School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China.
  2. Qiuna Zhuang: School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China.
  3. Yichun Ding: School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China.
  4. Chi Zhang: School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China.
  5. Xian Song: School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China.
  6. Zijian Chen: School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China.
  7. Yaokang Zhang: School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China.
  8. Quanjin Mei: Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China.
  9. Xin Zhao: Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China.
  10. Qiyao Huang: School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China.
  11. Zijian Zheng: School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China. ORCID

Abstract

Skin electronics provides remarkable opportunities for non-invasive and long-term monitoring of a wide variety of biophysical and physiological signals that are closely related to health, medicine, and human-machine interactions. Nevertheless, conventional skin electronics fabricated on elastic thin films are difficult to adapt to the wet microenvironments of the skin: Elastic thin films are non-permeable, which block the skin perspiration; Elastic thin films are difficult to adhere to wet skin; Most skin electronics are difficult to work underwater. Here, a Wet-Adaptive Electronic Skin (WADE-skin) is reported, which consists of a next-to-skin wet-adhesive fibrous layer, a next-to-air waterproof fibrous layer, and a stretchable and permeable liquid metal electrode layer. While the electronic functionality is determined by the electrode design, this WADE-skin simultaneously offers superb stretchability, wet adhesion, permeability, biocompatibility, and waterproof property. The WADE-skin can rapidly adhere to human skin after contact for a few seconds and stably maintain the adhesion over weeks even under wet conditions, without showing any negative effect to the skin health. The use of WADE-skin is demonstrated for the stable recording of electrocardiogram during intensive sweating as well as underwater activities, and as the strain sensor for the underwater operation of virtual reality-mediated human-machine interactions.

Keywords

References

  1. D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T.-i. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, J. A. Rogers, Science 2011, 333, 838.
  2. J. C. Yang, J. Mun, S. Y. Kwon, S. Park, Z. Bao, S. Park, Adv. Mater. 2019, 31, 1904765.
  3. C. Wang, X. Chen, L. Wang, M. Makihata, H.-C. Liu, T. Zhou, X. Zhao, Science 2022, 377, 517.
  4. F. Ershad, A. Thukral, J. Yue, P. Comeaux, Y. Lu, H. Shim, K. Sim, N.-I. Kim, Z. Rao, R. Guevara, L. Contreras, F. Pan, Y. Zhang, Y.-S. Guan, P. Yang, X. Wang, P. Wang, X. Wu, C. Yu, Nat. Commun. 2020, 11, 3823.
  5. H. Hu, H. Huang, M. Li, X. Gao, L. Yin, R. Qi, R. S. Wu, X. Chen, Y. Ma, K. Shi, C. Li, T. M. Maus, B. Huang, C. Lu, M. Lin, S. Zhou, Z. Lou, Y. Gu, Y. Chen, Y. Lei, X. Wang, R. Wang, W. Yue, X. Yang, Y. Bian, J. Mu, G. Park, S. Xiang, S. Cai, P. W. Corey, et al., Nature 2023, 613, 667.
  6. Y. Wang, H. Haick, S. Guo, C. Wang, S. Lee, T. Yokota, T. Someya, Chem. Soc. Rev. 2022, 51, 3759.
  7. Y. Zhang, Y. Luo, L. Wang, P. F. Ng, H. Hu, F. Chen, Q. Huang, Z. Zheng, ACS Appl. Mater. Interfaces 2022, 14, 56193.
  8. S. Liu, Y. Rao, H. Jang, P. Tan, N. Lu, Matter 2022, 5, 1104.
  9. C. Lim, Y. J. Hong, J. Jung, Y. Shin, S.-H. Sunwoo, S. Baik, O. K. Park, S. H. Choi, T. Hyeon, J. H. Kim, S. Lee, D.-H. Kim, Sci. Adv. 2021, 7, eabd3716.
  10. J. Zhang, Q. Jia, Z. Yue, J. Huo, J. Chai, L. Yu, R. Nie, H. Shao, Y. Zhao, P. Li, W. Huang, Adv. Mater. 2022, 34, 2200334.
  11. N. Matsuhisa, X. Chen, Z. Bao, T. Someya, Chem. Soc. Rev. 2019, 48, 2946.
  12. S. Wang, Y. Nie, H. Zhu, Y. Xu, S. Cao, J. Zhang, Y. Li, J. Wang, X. Ning, D. Kong, Sci. Adv. 2022, 8, eabl5511.
  13. L. Tang, J. Shang, X. Jiang, Sci. Adv. 2021, 7, eabe3778.
  14. W. Lee, H. Kim, I. Kang, H. Park, J. Jung, H. Lee, H. Park, J. S. Park, J. M. Yuk, S. Ryu, J.-W. Jeong, J. Kang, Science 2022, 378, 637.
  15. Z. Huang, Y. Hao, Y. Li, H. Hu, C. Wang, A. Nomoto, T. Pan, Y. Gu, Y. Chen, T. Zhang, W. Li, Y. Lei, N. Kim, C. Wang, L. Zhang, J. W. Ward, A. Maralani, X. Li, M. F. Durstock, A. Pisano, Y. Lin, S. Xu, Nat. Electron. 2018, 1, 473.
  16. M. Hua, S. Wu, Y. Ma, Y. Zhao, Z. Chen, I. Frenkel, J. Strzalka, H. Zhou, X. Zhu, X. He, Nature 2021, 590, 594.
  17. Y. Ding, Z. Zheng, Matter 2022, 5, 2570.
  18. Z. Ma, Q. Huang, N. Zhou, Q. Zhuang, S.-W. Ng, Z. Zheng, Cell Rep. Phys. Sci. 2023, 4, 101300.
  19. Y. Liu, C. K. Yiu, Z. Zhao, S. Liu, X. Huang, W. Park, J. Su, J. Zhou, T. H. Wong, K. Yao, L. Zhao, Y. Huang, J. Li, P. Fan, B. Zhang, Y. Dai, Z. Yang, Y. Li, X. Yu, IEEE Internet Things J. 2023, 10, 653.
  20. X. Yu, Z. Xie, Y. Yu, J. Lee, A. Vazquez-Guardado, H. Luan, J. Ruban, X. Ning, A. Akhtar, D. Li, B. Ji, Y. Liu, R. Sun, J. Cao, Q. Huo, Y. Zhong, C. Lee, S. Kim, P. Gutruf, C. Zhang, Y. Xue, Q. Guo, A. Chempakasseril, P. Tian, W. Lu, J. Jeong, Y. Yu, J. Cornman, C. Tan, B. Kim, et al., Nature 2019, 575, 473.
  21. M. Wang, Z. Yan, T. Wang, P. Cai, S. Gao, Y. Zeng, C. Wan, H. Wang, L. Pan, J. Yu, S. Pan, K. He, J. Lu, X. Chen, Nat. Electron. 2020, 3, 563.
  22. H. Zhou, W. Huang, Z. Xiao, S. Zhang, W. Li, J. Hu, T. Feng, J. Wu, P. Zhu, Y. Mao, Adv. Funct. Mater. 2022, 32, 2208271.
  23. Y. Yu, J. Li, S. A. Solomon, J. Min, J. Tu, W. Guo, C. Xu, Y. Song, W. Gao, Sci. Robot. 2022, 7, eabn0495.
  24. Y. Liu, C. Yiu, Z. Song, Y. Huang, K. Yao, T. Wong, J. Zhou, L. Zhao, X. Huang, S. K. Nejad, M. Wu, D. Li, J. He, X. Guo, J. Yu, X. Feng, Z. Xie, X. Yu, Sci. Adv. 2022, 8, eabl6700.
  25. C. Wang, C. Wang, Z. Huang, S. Xu, Adv. Mater. 2018, 30, 1801368.
  26. M. D. Dickey, Adv. Mater. 2017, 29, 1606425.
  27. S. Huang, Y. Liu, Y. Zhao, Z. Ren, C. F. Guo, Adv. Funct. Mater. 2019, 29, 1805924.
  28. X. Yang, S. Wang, M. Liu, L. Li, Y. Zhao, Y. Wang, Y. Bai, Q. Lu, Z. Xiong, S. Feng, T. Zhang, Small 2022, 18, 2106477.
  29. J. Soon, Park, T. T., Ann. Physiol. Anthrop. 1992, 11, 593.
  30. F. Chen, Q. Huang, Z. Zheng, Small Struct. 2022, 3, 2100135.
  31. Q. Huang, Z. Zheng, ACS Nano 2022, 16, 15537.
  32. A. Miyamoto, S. Lee, N. F. Cooray, S. Lee, M. Mori, N. Matsuhisa, H. Jin, L. Yoda, T. Yokota, A. Itoh, M. Sekino, H. Kawasaki, T. Ebihara, M. Amagai, T. Someya, Nat. Nanotechnol. 2017, 12, 907.
  33. Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao, Y. Yang, H. Qiu, Z. Yang, C. Wang, Y. Chai, Z. Zheng, Nat. Mater. 2021, 20, 859.
  34. X. Yang, J. Yi, T. Wang, Y. Feng, J. Wang, J. Yu, F. Zhang, Z. Jiang, Z. Lv, H. Li, T. Huang, D. Si, X. Wang, R. Cao, X. Chen, Adv. Mater. 2022, 34, 2201768.
  35. S. Lee, S. Franklin, F. A. Hassani, T. Yokota, M. O. G. Nayeem, Y. Wang, R. Leib, G. Cheng, D. W. Franklin, T. Someya, Science 2020, 370, 966.
  36. T. Someya, M. Amagai, Nat. Biotechnol. 2019, 37, 382.
  37. Q. Zhuang, Z. Ma, Y. Gao, Y. Zhang, S. Wang, X. Lu, H. Hu, C. Cheung, Q. Huang, Z. Zheng, Adv. Funct. Mater. 2021, 31, 2105587.
  38. J. Deng, H. Yuk, J. Wu, C. E. Varela, X. Chen, E. T. Roche, C. F. Guo, X. Zhao, Nat. Mater. 2021, 20, 229.
  39. J.-W. Jeong, W.-H. Yeo, A. Akhtar, J. J. S. Norton, Y.-J. Kwack, S. Li, S.-Y. Jung, Y. Su, W. Lee, J. Xia, H. Cheng, Y. Huang, W.-S. Choi, T. Bretl, J. A. Rogers, Adv. Mater. 2013, 25, 6839.
  40. H. Yuk, C. E. Varela, C. S. Nabzdyk, X. Mao, R. F. Padera, E. T. Roche, X. Zhao, Nature 2019, 575, 169.
  41. P. Tan, H. Wang, F. Xiao, X. Lu, W. Shang, X. Deng, H. Song, Z. Xu, J. Cao, T. Gan, B. Wang, X. Zhou, Nat. Commun. 2022, 13, 358.
  42. X. Peng, X. Xia, X. Xu, X. Yang, B. Yang, P. Zhao, W. Yuan, P. W. Y. Chiu, L. Bian, Sci. Adv. 2021, 7, eabe8739.
  43. S. Y. Lee, S. Jeon, Y. W. Kwon, M. Kwon, M. S. Kang, K.-Y. Seong, T.-E. Park, S. Y. Yang, D.-W. Han, S. W. Hong, K. S. Kim, Sci. Adv. 2022, 8, eabn1646.
  44. Y. Hou, Y. Li, Y. Li, D. Li, T. Guo, X. Deng, H. Zhang, C. Xie, X. Lu, ACS Nano 2023, 17, 2745.
  45. J. Yang, R. Bai, B. Chen, Z. Suo, Adv. Funct. Mater. 2020, 30, 1901693.
  46. H. Fan, J. P. Gong, Adv. Mater. 2021, 33, 2102983.
  47. Q. Yang, T. Wei, R. T. Yin, M. Wu, Y. Xu, J. Koo, Y. S. Choi, Z. Xie, S. W. Chen, I. Kandela, S. Yao, Y. Deng, R. Avila, T.-L. Liu, W. Bai, Y. Yang, M. Han, Q. Zhang, C. R. Haney, K. Benjamin Lee, K. Aras, T. Wang, M.-H. Seo, H. Luan, S. M. Lee, A. Brikha, N. Ghoreishi-Haack, L. Tran, I. Stepien, F. Aird, et al., Nat. Mater. 2021, 20, 1559.
  48. X. Liu, L. Shi, X. Wan, B. Dai, M. Yang, Z. Gu, X. Shi, L. Jiang, S. Wang, Adv. Mater. 2021, 33, 2007301.
  49. H. Hu, D. Wang, H. Tian, Q. Huang, C. Wang, X. Chen, Y. Gao, X. Li, X. Chen, Z. Zheng, J. Shao, Adv. Funct. Mater. 2022, 32, 2109076.
  50. Z. Ma, G. Bao, J. Li, Adv. Mater. 2021, 33, 2007663.
  51. J. Li, A. D. Celiz, J. Yang, Q. Yang, I. Wamala, W. Whyte, B. R. Seo, N. V. Vasilyev, J. J. Vlassak, Z. Suo, D. J. Mooney, Science 2017, 357, 378.
  52. C. Cui, W. Liu, Prog. Polym. Sci. 2021, 116, 101388.
  53. Z. Wang, X. Wan, S. Wang, Chem 2023, 9, 771.
  54. J. Cheng, J. Shang, S. Yang, J. Dou, X. Shi, X. Jiang, Adv. Funct. Mater. 2022, 32, 2200444.
  55. S. Wang, S. Li, H. Wang, H. Lu, M. Zhu, X.-E. Wu, H. Liang, X. Liang, Y. Zhang, Adv. Funct. Mater. 2023, 2302687.
  56. H. Yang, S. Ji, I. Chaturvedi, H. Xia, T. Wang, G. Chen, L. Pan, C. Wan, D. Qi, Y.-S. Ong, X. Chen, ACS Mater. Lett. 2020, 2, 478.
  57. S. Ji, C. Wan, T. Wang, Q. Li, G. Chen, J. Wang, Z. Liu, H. Yang, X. Liu, X. Chen, Adv. Mater. 2020, 32, 2001496.
  58. L. Zhu, B. Wang, S. Handschuh-Wang, X. Zhou, Small 2020, 16, 1903841.
  59. S. Chen, H.-Z. Wang, R.-Q. Zhao, W. Rao, J. Liu, Matter 2020, 2, 1446.
  60. A. Fassler, C. Majidi, Adv. Mater. 2015, 27, 1928.
  61. Q. Shen, M. Jiang, R. Wang, K. Song, M. H. Vong, W. Jung, F. Krisnadi, R. Kan, F. Zheng, B. Fu, P. Tao, C. Song, G. Weng, B. Peng, J. Wang, W. Shang, M. D. Dickey, T. Deng, Science 2023, 379, 488.
  62. A. Leber, C. Dong, R. Chandran, T. D. Gupta, N. Bartolomei, F. Sorin, Nat. Electron. 2020, 3, 316.
  63. C. Pailler-Mattei, S. Bec, H. Zahouani, Med. Eng. Phys. 2008, 30, 599.
  64. S. Choi, H. Lee, R. Ghaffari, T. Hyeon, D.-H. Kim, Adv. Mater. 2016, 28, 4203.
  65. C. Li, C. Zheng, C. Tai, IEEE Trans. Biomed. Eng. 1995, 42, 21.
  66. Y. Cheng, Y. Zhou, R. Wang, K. H. Chan, Y. Liu, T. Ding, X. Q. Wang, T. Li, G. W. Ho, ACS Nano 2022, 16, 18608.
  67. Q. Zhuang, K. Yao, M. Wu, Z. Lei, F. Chen, J. Li, Q. Mei, Y. Zhou, Q. Huang, X. Zhao, Y. Li, X. Yu, Z. Zheng, Sci. Adv. 2023, 9, eadg8602.

Grants

  1. SRFS2122-5S04/RGC Senior Research Fellow Scheme
  2. P0038661/Hong Kong Polytechnic University
  3. P0038678/Hong Kong Polytechnic University
  4. XJ2021047/Hong Kong Scholars Program
  5. SGDX20210823103403033/Shenzhen Science and Technology Innovation Committee
  6. 15212021/General Research Fund of Hong Kong

MeSH Term

Humans
Wearable Electronic Devices
Electronics
Skin
Sweat
Electrocardiography

Word Cloud

Created with Highcharts 10.0.0skinwetelectronicsWADE-skinSkinhuman-machinethinfilmsdifficultunderwaterlayeradhesionhealthinteractionsElasticadhereWet-AdaptiveElectronicfibrouswaterproofpermeableelectrodeelectronicsensorprovidesremarkableopportunitiesnon-invasivelong-termmonitoringwidevarietybiophysicalphysiologicalsignalscloselyrelatedmedicineNeverthelessconventionalfabricatedelasticadaptmicroenvironmentsskin:non-permeableblockperspirationworkreportedconsistsnext-to-skinwet-adhesivenext-to-airstretchableliquidmetalfunctionalitydetermineddesignsimultaneouslyofferssuperbstretchabilitypermeabilitybiocompatibilitypropertycanrapidlyhumancontactsecondsstablymaintainweeksevenconditionswithoutshowingnegativeeffectusedemonstratedstablerecordingelectrocardiogramintensivesweatingwellactivitiesstrainoperationvirtualreality-mediatedinteraction

Similar Articles

Cited By