Comprehensive analysis of m6A regulators and relationship with tumor microenvironment, immunotherapy strategies in colorectal adenocarcinoma.

Jian Ji, Shichao Liu, Yongyuan Liang, Guixi Zheng
Author Information
  1. Jian Ji: Department of Clinical Laboratory, Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.
  2. Shichao Liu: Department of Clinical Laboratory, Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.
  3. Yongyuan Liang: Department of Clinical Laboratory, Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.
  4. Guixi Zheng: Department of Clinical Laboratory, Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China. zhengg@sdu.edu.cn.

Abstract

BACKGROUND: The N6-methyladenosine (m6A) RNA modification is the most prevalent and abundant type found in eukaryotic cells. It plays a crucial role in the initiation and progression of cancers. In this study, we aimed to comprehensively investigate the landscape of m6A regulators and their association with tumor microenvironment (TME), immunotherapeutic strategies in colon adenocarcinoma (COAD).
RESULTS: The differential expression, mutation, CNV frequency and prognostic value of 27 m6A regulators were systematically analyzed in COAD. Patients were classified into two clusters based on m6A regulators through consistent clustering analysis, with cluster A showing significant survival benefits. Most of the m6A regulators were negatively correlated with immune cells, except for WTAP, IGF2BP3, FTO, ALKBH5, which showed a positive correlation. We developed an m6A scoring system to calculate the m6Ascore for each patient. Patients with a high-m6Ascore had a better outcome, with the AUC of 0.775. An independent cohort of 416 COAD patients acquired from GSE38832 database was used to validate the prognosis prediction ability of m6Ascore. Moreover, the m6Ascore was negatively correlated with infiltration of anti-tumor immune cells. Additionally, patients with a high-m6Ascore responded better to anti-PD1 and anti-CTLA4 therapies, and those with MSI-H had a higher m6Ascore. Finally, we investigated the value of m6Ascore in predicting the response of patients to 15 commonly used drugs.
CONCLUSIONS: We comprehensively analyzed m6A regulators in COAD, including RNA expression, CNV changes, mutations and their correlation with TME. Our results showed that the m6A scoring system had significant predictive power for the prognosis of COAD patients, potentially leading to new personalized immunotherapy strategies.

Keywords

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49. [DOI: 10.3322/caac.21660]
  2. Mutch MG. Molecular profiling and risk stratification of adenocarcinoma of the colon. J Surg Oncol. 2007;96(8):693–703. [DOI: 10.1002/jso.20915]
  3. Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, Bouley DM, Lujan E, Haddad B, Daneshvar K, Carter AC, Flynn RA, Zhou C, Lim KS, Dedon P, Wernig M, Mullen AC, Xing Y, Giallourakis CC, Chang HY. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell. 2014;15(6):707–19. [DOI: 10.1016/j.stem.2014.09.019]
  4. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505(7481):117–20. [DOI: 10.1038/nature12730]
  5. Niu Y, Zhao X, Wu YS, Li MM, Wang XJ, Yang YG. N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function. Genomics Proteomics Bioinformatics. 2013;11(1):8–17. [DOI: 10.1016/j.gpb.2012.12.002]
  6. Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer. Biomed pharmacother. 2019;112:108613. [DOI: 10.1016/j.biopha.2019.108613]
  7. Liu X, Wang P, Teng X, Zhang Z, Song S. Comprehensive analysis of expression regulation for RNA m6A regulators with clinical significance in human cancers. Front Oncol. 2021;11:624395. [DOI: 10.3389/fonc.2021.624395]
  8. Liu T, Yang S, Cheng YP, Kong XL, Du DD, Wang X, Bai YF, Yin LH, Pu YP, Liang GY. The N6-Methyladenosine (m6A) Methylation Gene YTHDF1 Reveals a Potential Diagnostic Role for Gastric Cancer. Cancer Manag Res. 2020;12:11953–64. [DOI: 10.2147/CMAR.S279370]
  9. Liu J, Sun G, Pan S, Qin M, Ouyang R, Li Z, Huang J. The Cancer Genome Atlas (TCGA) based m(6)A methylation-related genes predict prognosis in hepatocellular carcinoma. Bioengineered. 2020;11(1):759–68. [DOI: 10.1080/21655979.2020.1787764]
  10. Zhang H, Hu J, Liu A, Qu H, Jiang F, Wang C, Mo S, Sun P. An N6-Methyladenosine-related gene set variation score as a prognostic tool for lung adenocarcinoma. Front Cell Dev Biol. 2021;9:651575. [DOI: 10.3389/fcell.2021.651575]
  11. Geng Y, Guan R, Hong W, Huang B, Liu P, Guo X, Hu S, Yu M, Hou B. Identification of m6A-related genes and m6A RNA methylation regulators in pancreatic cancer and their association with survival. Ann Transl Med. 2020;8(6):387. [DOI: 10.21037/atm.2020.03.98]
  12. Xu N, Chen J, He G, Gao L, Zhang D. Prognostic values of m6A RNA methylation regulators in differentiated thyroid carcinoma. J Cancer. 2020;11(17):5187–97. [DOI: 10.7150/jca.41193]
  13. Mahajan UM, Langhoff E, Goni E, Costello E, Greenhalf W, Halloran C, Ormanns S, Kruger S, Boeck S, Ribback S, Beyer G, Dombroswki F, Weiss FU, Neoptolemos JP, Werner J, D’Haese JG, Bazhin A, Peterhansl J, Pichlmeier S, Büchler MW, Kleeff J, Ganeh P, Sendler M, Palmer DH, Kohlmann T, Rad R, Regel I, Lerch MM, Mayerle J. Immune cell and stromal signature associated with progression-free survival of patients with resected pancreatic ductal adenocarcinoma. Gastroenterol. 2018;155(5):1625-1639.e2. [DOI: 10.1053/j.gastro.2018.08.009]
  14. Sun Q, Zhang B, Hu Q, Qin Y, Xu W, Liu W, Yu X, Xu J. The impact of cancer-associated fibroblasts on major hallmarks of pancreatic cancer. Theranostics. 2018;8(18):5072–87. [DOI: 10.7150/thno.26546]
  15. Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14(12):717–34. [DOI: 10.1038/nrclinonc.2017.101]
  16. Lin S, Xu H, Zhang A, Ni Y, Xu Y, Meng T, Wang M, Lou M. Prognosis analysis and validation of m(6)A signature and tumor immune microenvironment in glioma. Front Oncol. 2020;10:541401. [DOI: 10.3389/fonc.2020.541401]
  17. Chong W, Shang L, Liu J, Fang Z, Du F, Wu H, Liu Y, Wang Z, Chen Y, Jia S, Chen L, Li L, Chen H. m(6)A regulator-based methylation modification patterns characterized by distinct tumor microenvironment immune profiles in colon cancer. Theranostics. 2021;11(5):2201–17. [DOI: 10.7150/thno.52717]
  18. Yao Y, Luo L, Xiang G, Xiong J, Ke N, Tan C, Chen Y, Liu X. The expression of m(6)A regulators correlated with the immune microenvironment plays an important role in the prognosis of pancreatic ductal adenocarcinoma. Gland Surg. 2022;11(1):147–65. [DOI: 10.21037/gs-21-859]
  19. Ye W, Huang T. Correlation analysis of m6A-modified regulators with immune microenvironment infiltrating cells in lung adenocarcinoma. PLoS ONE. 2022;17(2):e0264384. [DOI: 10.1371/journal.pone.0264384]
  20. Zhu W, Zhao L, Kong B, Liu Y, Zou X, Han T, Shi Y. The methylation modification of m6A regulators contributes to the prognosis of ovarian cancer. Ann Transl Med. 2022;10(2):59. [DOI: 10.21037/atm-21-6462]
  21. Xiong W, Li C, Wan B, Zheng Z, Zhang Y, Wang S, Fan J. N6-methyladenosine regulator-mediated immue patterns and tumor microenvironment infiltration characterization in glioblastoma. Front Immunol. 2022;13:819080. [DOI: 10.3389/fimmu.2022.819080]
  22. Chen XY, Zhang J, Zhu JS. The role of m(6)A RNA methylation in human cancer. Mol Cancer. 2019;18(1):103. [DOI: 10.1186/s12943-019-1033-z]
  23. Shulman Z, Stern-Ginossar N. The RNA modification N(6)-methyladenosine as a novel regulator of the immune system. Nat Immunol. 2020;21(5):501–12. [DOI: 10.1038/s41590-020-0650-4]
  24. Jian D, Wang Y, Jian L, Tang H, Rao L, Chen K, Jia Z, Zhang W, Liu Y, Chen X, Shen X, Gao C, Wang S, Li M. METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications. Theranostics. 2020;10(20):8939–56. [DOI: 10.7150/thno.45178]
  25. Zhang C, Zhang M, Ge S, Huang W, Lin X, Gao J, Gong J, Shen L. Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer. Cancer Med. 2019;8(10):4766–81. [DOI: 10.1002/cam4.2360]
  26. Anita R, Paramasivam A, Priyadharsini JV, Chitra S. The m6A readers YTHDF1 and YTHDF3 aberrations associated with metastasis and predict poor prognosis in breast cancer patients. Am J Cancer Res. 2020;10(8):2546–54. [PMID: 32905518]
  27. Zhang C, Huang S, Zhuang H, Ruan S, Zhou Z, Huang K, Ji F, Ma Z, Hou B, He X. YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation. Oncogene. 2020;39(23):4507–18. [DOI: 10.1038/s41388-020-1303-7]
  28. Chen Y, Pan C, Wang X, Xu D, Ma Y, Hu J, Chen P, Xiang Z, Rao Q, Han X. Silencing of METTL3 effectively hinders invasion and metastasis of prostate cancer cells. Theranostics. 2021;11(16):7640–57. [DOI: 10.7150/thno.61178]
  29. Li J, Xie H, Ying Y, Chen H, Yan H, He L, Xu M, Xu X, Liang Z, Liu B, Wang X, Zheng X, Xie L. YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer. 2020;19(1):152. [DOI: 10.1186/s12943-020-01267-6]
  30. Yang P, Wang Q, Liu A, Zhu J, Feng J. ALKBH5 Holds Prognostic values and inhibits the metastasis of colon cancer. Pathol Oncol Res. 2020;26(3):1615–23. [DOI: 10.1007/s12253-019-00737-7]
  31. Kim YR, Chung NG, Kang MR, Yoo NJ, Lee SH. Novel somatic frameshift mutations of genes related to cell cycle and DNA damage response in gastric and colorectal cancers with microsatellite instability. Tumori. 2010;96(6):1004–9. [PMID: 21388066]
  32. Zhu D, Zhou J, Zhao J, Jiang G, Zhang X, Zhang Y, Dong M. ZC3H13 suppresses colorectal cancer proliferation and invasion via inactivating Ras-ERK signaling. J Cell Physiol. 2019;234(6):8899–907. [DOI: 10.1002/jcp.27551]
  33. Li Z, Liu Y, Yi H, Cai T, Wei Y. Identification of N6-methylandenosine related lncRNA signatures for predicting the prognosis and therapy response in colorectal cancer patients. Front Genet. 2022;13:947747. [DOI: 10.3389/fgene.2022.947747]
  34. Li W, Gao Y, Jin X, Wang H, Lan T, Wei M, Yan W, Wang G, Li Z, Zhao Z, Jiang X. Comprehensive analysis of N6-methylandenosine regulators and m6A-related RNAs as prognosis factors in colorectal cancer. Mol Ther Nucleic Acids. 2022;27:598–610. [DOI: 10.1016/j.omtn.2021.12.007]
  35. Zeng H, Xu Y, Xu S, Jin L, Shen Y, Rajan KC, Bhandari A, Xia E. Construction and analysis of a colorectal cancer prognostic model based on N6-methyladenosine-related lncRNAs. Front Cell Dev Biol. 2021;9:698388. [DOI: 10.3389/fcell.2021.698388]
  36. Yan G, An Y, Xu B, Wang N, Sun X, Sun M. Potential impact of ALKBH5 and YTHDF1 on tumor immunity in colon sdenocarcinoma. Front Oncol. 2021;11:670490. [DOI: 10.3389/fonc.2021.670490]
  37. Zhou Y, Zhou H, Shi J, Guan A, Zhu Y, Hou Z, Li R. Decreased m6A modification of CD34/CD276(B7–H3) leads to immune escape in colon cancer. Front Cell Dev Biol. 2021;9:715674. [DOI: 10.3389/fcell.2021.715674]

Grants

  1. 2019GSF108064/Key Research and Development Project of Shandong Province
  2. 82172347/National Natural Science Foundation of China

MeSH Term

Humans
Adenocarcinoma
Colonic Neoplasms
Tumor Microenvironment
Colorectal Neoplasms
Immunotherapy
RNA
Alpha-Ketoglutarate-Dependent Dioxygenase FTO

Chemicals

RNA
FTO protein, human
Alpha-Ketoglutarate-Dependent Dioxygenase FTO

Word Cloud

Created with Highcharts 10.0.0m6AregulatorsCOADm6AscorepatientscellsmicroenvironmentstrategiesadenocarcinomaN6-methyladenosineRNAcomprehensivelytumorTMEexpressionCNVvalueanalyzedPatientsanalysissignificantnegativelycorrelatedimmuneshowedcorrelationscoringsystemhigh-m6AscorebetterusedprognosisimmunotherapyBACKGROUND:modificationprevalentabundanttypefoundeukaryoticplayscrucialroleinitiationprogressioncancersstudyaimedinvestigatelandscapeassociationimmunotherapeuticcolonRESULTS:differentialmutationfrequencyprognostic27systematicallyclassifiedtwoclustersbasedconsistentclusteringclustershowingsurvivalbenefitsexceptWTAPIGF2BP3FTOALKBH5positivedevelopedcalculatepatientoutcomeAUC0775independentcohort416acquiredGSE38832databasevalidatepredictionabilityMoreoverinfiltrationanti-tumorAdditionallyrespondedanti-PD1anti-CTLA4therapiesMSI-HhigherFinallyinvestigatedpredictingresponse15commonlydrugsCONCLUSIONS:includingchangesmutationsresultspredictivepowerpotentiallyleadingnewpersonalizedComprehensiverelationshipcolorectalColonImmunotherapyPrognosisTumor

Similar Articles

Cited By