Advances in Microfluidics Techniques for Rapid Detection of Pesticide Residues in Food.

Zhuoao Jiang, Yu Zhuang, Shentian Guo, A S M Muhtasim Fuad Sohan, Binfeng Yin
Author Information
  1. Zhuoao Jiang: School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China.
  2. Yu Zhuang: School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China.
  3. Shentian Guo: School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China.
  4. A S M Muhtasim Fuad Sohan: Faculty of Engineering, Department of Mechanical Engineering, The University of Adelaide, Adelaide, SA 5000, Australia. ORCID
  5. Binfeng Yin: School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China. ORCID

Abstract

Food safety is a significant issue that affects people worldwide and is tied to their lives and health. The issue of pesticide residues in food is just one of many issues related to food safety, which leave residues in crops and are transferred through the food chain to human consumption. Foods contaminated with pesticide residues pose a serious risk to human health, including carcinogenicity, neurotoxicity, and endocrine disruption. Although traditional methods, including gas chromatography, high-performance liquid chromatography, chromatography, and mass spectrometry, can be used to achieve a quantitative analysis of pesticide residues, the disadvantages of these techniques, such as being time-consuming and costly and requiring specialist staff, limit their application. Therefore, there is a need to develop rapid, effective, and sensitive equipment for the quantitative analysis of pesticide residues in food. Microfluidics is rapidly emerging in a number of fields due to its outstanding strengths. This paper summarizes the application of microfluidic techniques to pyrethroid, carbamate, organochlorine, and organophosphate pesticides, as well as to commercial products. Meanwhile, the study also outlines the development of microfluidics in combination with 3D printing technology and nanomaterials for detecting pesticide residues in food.

Keywords

References

  1. Chemosphere. 2019 Apr;220:1126-1140 [PMID: 33395800]
  2. Lancet. 2020 Apr 18;395(10232):1236-1237 [PMID: 32305084]
  3. Biosens Bioelectron. 2015 May 15;67:408-12 [PMID: 25216978]
  4. Biosens Bioelectron. 2017 Feb 15;88:188-195 [PMID: 27523821]
  5. Environ Res. 2022 Jun;209:112862 [PMID: 35123967]
  6. Chemosphere. 2023 May;324:138314 [PMID: 36889467]
  7. Mil Med Res. 2022 Feb 11;9(1):8 [PMID: 35144683]
  8. Anal Chim Acta. 2017 Aug 22;982:78-83 [PMID: 28734368]
  9. Chemosphere. 2022 Nov;307(Pt 2):135632 [PMID: 35835248]
  10. Chem Rev. 2017 Jun 28;117(12):7964-8040 [PMID: 28537383]
  11. Environ Sci Technol. 2005 Aug 1;39(15):5824-30 [PMID: 16124321]
  12. Environ Sci Technol. 2017 Aug 1;51(15):8672-8681 [PMID: 28636345]
  13. Chemosphere. 2020 Nov;259:127419 [PMID: 32593003]
  14. Sci Total Environ. 2019 Mar 1;654:678-683 [PMID: 30448658]
  15. JAMA Intern Med. 2020 Jul 1;180(7):1028 [PMID: 32478818]
  16. Crit Rev Anal Chem. 2023;53(2):233-252 [PMID: 34304654]
  17. Biosens Bioelectron. 2013 Sep 15;47:402-7 [PMID: 23612061]
  18. Food Chem. 2022 Sep 1;387:132919 [PMID: 35421656]
  19. Water Res. 2019 Sep 15;161:43-53 [PMID: 31176105]
  20. Biosens Bioelectron. 2022 Dec 15;218:114748 [PMID: 36206671]
  21. Chemosphere. 2020 Feb;240:124983 [PMID: 31726590]
  22. Environ Health Perspect. 2017 Apr;125(4):544-551 [PMID: 27384818]
  23. Sci Total Environ. 2015 Jan 1;502:184-98 [PMID: 25260164]
  24. Chemosphere. 2021 Jul;274:129427 [PMID: 33529959]
  25. Food Res Int. 2021 May;143:110246 [PMID: 33992358]
  26. Biosens Bioelectron. 2016 Dec 15;86:996-1002 [PMID: 27498327]
  27. Biosens Bioelectron. 2023 Jun 15;230:115283 [PMID: 37019031]
  28. Environ Res. 2017 Apr;154:10-18 [PMID: 27992738]
  29. Compr Rev Food Sci Food Saf. 2021 Jul;20(4):3818-3837 [PMID: 34056852]
  30. Biosens Bioelectron. 2013 Mar 15;41:669-74 [PMID: 23122753]
  31. Chemosphere. 2018 Jan;191:990-1007 [PMID: 29145144]
  32. Biosens Bioelectron. 2022 Mar 1;199:113906 [PMID: 34968952]
  33. Biofabrication. 2023 Feb 02;15(2): [PMID: 36652708]
  34. Food Chem. 2023 Aug 1;416:135822 [PMID: 36893638]
  35. Anal Chim Acta. 2013 Sep 24;796:68-74 [PMID: 24016585]
  36. Food Chem. 2023 Oct 30;424:136477 [PMID: 37263094]
  37. Biosens Bioelectron. 2022 Sep 15;212:114429 [PMID: 35671693]
  38. Biosens Bioelectron. 2019 Jul 1;136:112-117 [PMID: 31054518]
  39. Adv Mater. 2019 Nov;31(45):e1805033 [PMID: 30345586]
  40. Environ Monit Assess. 2011 Feb;173(1-4):325-41 [PMID: 20213056]
  41. JAMA Intern Med. 2020 Jul 1;180(7):1027-1028 [PMID: 32478841]
  42. Environ Health Perspect. 2016 Jun;124(6):822-30 [PMID: 26418669]
  43. Talanta. 2020 Oct 1;218:121108 [PMID: 32797872]
  44. Lab Chip. 2014 Dec 21;14(24):4638-46 [PMID: 25311204]
  45. Thorax. 2021 Apr 29;: [PMID: 33927024]
  46. ACS Omega. 2021 Nov 02;6(45):30779-30789 [PMID: 34805706]
  47. Chemosphere. 2021 Jul;275:130096 [PMID: 33677270]
  48. Biosens Bioelectron. 2023 Mar 15;224:115074 [PMID: 36638562]
  49. Micromachines (Basel). 2023 Jun 21;14(7): [PMID: 37512588]
  50. Anal Chem. 2013 Aug 20;85(16):7834-41 [PMID: 23865536]
  51. Micromachines (Basel). 2022 Aug 01;13(8): [PMID: 36014162]
  52. Anal Chem. 2023 Mar 7;95(9):4479-4485 [PMID: 36802539]
  53. Chemosphere. 2022 Feb;288(Pt 2):132511 [PMID: 34688713]
  54. Anal Chim Acta. 2019 May 9;1055:44-55 [PMID: 30782369]
  55. Environ Pollut. 2017 Jan;220(Pt B):853-862 [PMID: 27876223]
  56. ACS Appl Mater Interfaces. 2016 Mar;8(12):8058-67 [PMID: 26956086]
  57. Talanta. 2019 Jan 15;192:471-477 [PMID: 30348420]
  58. Food Chem. 2023 May 1;407:135171 [PMID: 36508866]
  59. Electrophoresis. 2020 Jun;41(10-11):821-832 [PMID: 31525822]
  60. Biosens Bioelectron. 2023 Feb 15;222:114981 [PMID: 36473422]
  61. Biosens Bioelectron. 2015 Jun 15;68:168-174 [PMID: 25569873]
  62. Environ Int. 2020 Aug;141:105778 [PMID: 32416373]
  63. Adv Healthc Mater. 2017 Aug;6(15): [PMID: 28322517]
  64. Anal Chim Acta. 2020 Mar 1;1100:215-224 [PMID: 31987143]
  65. Mikrochim Acta. 2020 Jul 2;187(7):419 [PMID: 32613298]
  66. J Mater Chem B. 2023 Mar 1;11(9):1978-1986 [PMID: 36752153]
  67. Microbiome. 2019 Feb 11;7(1):19 [PMID: 30744700]
  68. Biosens Bioelectron. 2014 May 15;55:216-9 [PMID: 24384262]
  69. J Hazard Mater. 2023 Mar 15;446:130669 [PMID: 36586336]
  70. Analyst. 2017 Aug 7;142(16):2954-2960 [PMID: 28725884]
  71. Analyst. 2022 Jul 22;147(15):3424-3433 [PMID: 35670058]
  72. Micromachines (Basel). 2023 Jun 25;14(7): [PMID: 37512613]
  73. J Chromatogr A. 2013 Oct 25;1313:139-46 [PMID: 23910603]
  74. Food Chem. 2023 Nov 15;426:136578 [PMID: 37336102]
  75. Environ Health Perspect. 1999 Jun;107 Suppl 3:409-19 [PMID: 10346990]
  76. Food Chem. 2019 Nov 1;297:124961 [PMID: 31253315]
  77. Sensors (Basel). 2020 Jul 23;20(15): [PMID: 32718040]
  78. Food Chem. 2020 Oct 15;327:127075 [PMID: 32446026]
  79. Front Chem. 2021 Oct 04;9:741058 [PMID: 34671590]
  80. Environ Pollut. 2023 Jan 1;316(Pt 1):120445 [PMID: 36265728]
  81. Anal Chim Acta. 2018 Feb 25;1001:86-92 [PMID: 29291810]
  82. Environ Health Perspect. 2018 Sep;126(9):97008 [PMID: 30256155]
  83. Food Chem. 2017 Sep 15;231:365-373 [PMID: 28450019]
  84. J Sep Sci. 2011 Nov;34(22):3231-9 [PMID: 22038851]
  85. Adv Nutr. 2019 Jan 1;10(1):80-88 [PMID: 30668620]
  86. Sci Total Environ. 2020 Sep 15;735:139475 [PMID: 32485451]
  87. Food Chem. 2022 Feb 15;370:131033 [PMID: 34509146]
  88. Front Chem. 2021 May 28;9:688442 [PMID: 34124008]
  89. J Hazard Mater. 2023 Jun 5;451:131171 [PMID: 36913745]
  90. Aquat Toxicol. 2004 Aug 10;69(2):133-48 [PMID: 15261450]
  91. Lancet. 2006 Dec 16;368(9553):2136-41 [PMID: 17174705]
  92. Anal Chem. 2023 Feb 7;95(5):2741-2749 [PMID: 36689633]
  93. Sci Total Environ. 2017 Jan 1;575:525-535 [PMID: 27614863]
  94. Small. 2020 Dec;16(49):e2005476 [PMID: 33201612]
  95. Micromachines (Basel). 2021 Nov 10;12(11): [PMID: 34832792]
  96. Food Chem Toxicol. 2005 Jan;43(1):1-19 [PMID: 15582191]
  97. Biosens Bioelectron. 2020 Dec 1;169:112605 [PMID: 32947079]
  98. JAMA Intern Med. 2020 Mar 1;180(3):374-375 [PMID: 31886823]

Grants

  1. 52075138/National Natural Science Foundation of China
  2. 22KJB150050/Natural Science Foundation of the Jiangsu Higher Education Institutions of China
  3. CX(21)3162/Jiangsu Agricultural Science and Technology Innovation Fund
  4. KJ2023076/Market Supervision Administration Science and Technology Fund of Jiangsu Province
  5. KYCX22_3479/Postgraduate Research & Practice Innovation Program of Jiangsu Province
  6. YZ2022180/Science and Technology Planning Project of Yangzhou City

Word Cloud

Created with Highcharts 10.0.0residuespesticidefoodchromatographyFoodsafetyissuehealthhumanincludingquantitativeanalysistechniquesapplicationrapidMicrofluidicsmicrofluidicsignificantaffectspeopleworldwidetiedlivesjustonemanyissuesrelatedleavecropstransferredchainconsumptionFoodscontaminatedposeseriousriskcarcinogenicityneurotoxicityendocrinedisruptionAlthoughtraditionalmethodsgashigh-performanceliquidmassspectrometrycanusedachievedisadvantagestime-consumingcostlyrequiringspecialiststafflimitThereforeneeddevelopeffectivesensitiveequipmentrapidlyemergingnumberfieldsdueoutstandingstrengthspapersummarizespyrethroidcarbamateorganochlorineorganophosphatepesticideswellcommercialproductsMeanwhilestudyalsooutlinesdevelopmentmicrofluidicscombination3DprintingtechnologynanomaterialsdetectingAdvancesTechniquesRapidDetectionPesticideResiduessamplesdetection

Similar Articles

Cited By (3)