A Multifunctional Polyethylene Glycol/Triethoxysilane-Modified Polyurethane Foam Dressing with High Absorbency and Antiadhesion Properties Promotes Diabetic Wound Healing.

Chiu-Fang Chen, Szu-Hsien Chen, Rong-Fu Chen, Keng-Fan Liu, Yur-Ren Kuo, Chih-Kuang Wang, Tzer-Min Lee, Yan-Hsiung Wang
Author Information
  1. Chiu-Fang Chen: School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan. ORCID
  2. Szu-Hsien Chen: Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, Taipei 106216, Taiwan.
  3. Rong-Fu Chen: Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan. ORCID
  4. Keng-Fan Liu: Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan.
  5. Yur-Ren Kuo: Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan. ORCID
  6. Chih-Kuang Wang: Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan. ORCID
  7. Tzer-Min Lee: Institute of Oral Medicine, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan. ORCID
  8. Yan-Hsiung Wang: School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan. ORCID

Abstract

The delayed healing of chronic wounds, such as diabetic foot ulcers (DFUs), is a clinical problem. Few dressings can promote wound healing by satisfying the demands of chronic wound exudate management and tissue granulation. Therefore, the aim of this study was to prepare a high-absorption polyurethane (PU) foam dressing modified by polyethylene glycol (PEG) and triethoxysilane (APTES) to promote wound healing. PEG-modified (PUE) and PEG/APTES-modified (PUESi) dressings were prepared by self-foaming reactions. Gauze and PolyMem were used as controls. Next, Fourier transform-infrared spectroscopy, thermomechanical analyses, scanning electron microscopy and tensile strength, water absorption, anti-protein absorption, surface dryness and biocompatibility tests were performed for in vitro characterization. Wound healing effects were further investigated in nondiabetic (non-DM) and diabetes mellitus (DM) rat models. The PUE and PUESi groups exhibited better physicochemical properties than the gauze and PolyMem groups. Moreover, PUESi dressing showed better anti-adhesion properties and absorption capacity with deformation. Furthermore, the PUESi dressing shortened the inflammatory phase and enhanced collagen deposition in both the non-DM and DM animal models. To conclude, the PUESi dressing not only was fabricated with a simple and effective strategy but also enhanced wound healing via micronegative-pressure generation by its high absorption compacity with deformation.

Keywords

References

  1. J Invest Dermatol. 2018 Apr;138(4):994-997 [PMID: 29106932]
  2. Peptides. 2016 Apr;78:1-10 [PMID: 26829459]
  3. Acta Biomater. 2014 Nov;10(11):4583-4596 [PMID: 25050775]
  4. Curr Probl Surg. 2014 Jul;51(7):301-31 [PMID: 24935079]
  5. Bioconjug Chem. 2020 Jul 15;31(7):1708-1723 [PMID: 32538089]
  6. Carbohydr Polym. 2021 Nov 15;272:118450 [PMID: 34420712]
  7. Plast Reconstr Surg. 2011 Dec;128(6):649e-658e [PMID: 22094766]
  8. Int J Mol Sci. 2016 Dec 11;17(12): [PMID: 27973441]
  9. J Burn Care Rehabil. 2005 Jul-Aug;26(4):306-19 [PMID: 16006837]
  10. J Wound Ostomy Continence Nurs. 2011 Sep-Oct;38(5):522-8 [PMID: 21860331]
  11. Int Immunopharmacol. 2016 Jan;30:137-149 [PMID: 26679676]
  12. Biomed Mater Eng. 2012;22(6):373-82 [PMID: 23114466]
  13. Wound Repair Regen. 2004 Nov-Dec;12(6):591-9 [PMID: 15555049]
  14. Cytotherapy. 2019 Nov;21(11):1137-1150 [PMID: 31668487]
  15. Br J Community Nurs. 2003;8(9 Suppl):suppl 4-9 [PMID: 14685963]
  16. Adv Wound Care (New Rochelle). 2021 Jun;10(6):317-327 [PMID: 32496977]
  17. Mater Sci Eng C Mater Biol Appl. 2019 Dec;105:110118 [PMID: 31546362]
  18. J Clin Med. 2022 Feb 08;11(3): [PMID: 35160339]
  19. Cell Transplant. 2016;25(1):71-81 [PMID: 25853951]
  20. J Plast Reconstr Aesthet Surg. 2012 Jan;65(1):91-9 [PMID: 21885358]
  21. Int J Mol Sci. 2021 Oct 13;22(20): [PMID: 34681687]
  22. Wound Repair Regen. 2009 Jul-Aug;17(4):522-30 [PMID: 19614917]
  23. Mater Sci Eng C Mater Biol Appl. 2018 Aug 1;89:33-40 [PMID: 29752105]
  24. J Biomed Mater Res A. 2020 May;108(5):1086-1098 [PMID: 31943702]
  25. Colloids Surf B Biointerfaces. 2013 Jun 1;106:37-45 [PMID: 23434689]
  26. Int J Biol Macromol. 2020 Apr 15;149:467-476 [PMID: 32001284]
  27. Br J Community Nurs. 2019 Sep 1;24(Sup9):S26-S32 [PMID: 31479336]
  28. Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:866-874 [PMID: 28629091]
  29. J Mater Sci Mater Med. 2017 May;28(5):75 [PMID: 28386852]
  30. Int Wound J. 2012 Dec;9 Suppl 2:1-19 [PMID: 23145905]
  31. Nurs Stand. 2002 Oct 9-15;17(4):49-53; quiz 54, 56 [PMID: 12430331]
  32. Nurs Stand. 2004 Oct 27-Nov 2;19(7):62, 64, 66 passim [PMID: 15551919]
  33. J Mech Behav Biomed Mater. 2013 Nov;27:64-76 [PMID: 23880039]
  34. Int J Mol Sci. 2019 Feb 25;20(4): [PMID: 30823606]
  35. Mater Sci Eng C Mater Biol Appl. 2017 Feb 1;71:289-297 [PMID: 27987710]
  36. Plast Reconstr Surg. 2011 Oct;128(4):872-880 [PMID: 21921763]
  37. Front Immunol. 2022 Mar 01;13:789274 [PMID: 35300324]
  38. J Wound Ostomy Continence Nurs. 1996 Nov;23(6):283-90 [PMID: 9043277]
  39. Wound Repair Regen. 2009 Jan-Feb;17(1):80-7 [PMID: 19152654]
  40. Colloids Surf B Biointerfaces. 2019 Jun 1;178:177-184 [PMID: 30856587]
  41. ACS Appl Mater Interfaces. 2020 Jan 22;12(3):3393-3406 [PMID: 31874022]
  42. Stem Cell Res Ther. 2020 Jun 29;11(1):259 [PMID: 32600435]
  43. Biochem Biophys Res Commun. 2021 Jan 1;534:1064-1068 [PMID: 33092791]
  44. Int J Mol Sci. 2020 Sep 29;21(19): [PMID: 33003599]
  45. Int J Nurs Stud. 2022 Mar;127:104172 [PMID: 35124474]
  46. Plast Reconstr Surg. 2006 Jun;117(7 Suppl):35S-41S [PMID: 16799373]
  47. Int Wound J. 2017 Jun;14(3):516-522 [PMID: 27397143]
  48. J Invest Dermatol. 2018 Oct;138(10):2095-2105.e1 [PMID: 30244718]
  49. J Nanobiotechnology. 2018 Nov 12;16(1):89 [PMID: 30419925]
  50. Mater Sci Eng C Mater Biol Appl. 2013 Jul 1;33(5):2584-94 [PMID: 23623072]

Grants

  1. NSTC 110-2622-B-037-001/National Science and Technology Council of Taiwan
  2. MOST111-2314-B-037-045/National Science and Technology Council of Taiwan
  3. KMU-TC112A02/Regenerative Medicine and Cell Therapy Research Center of Kaohsiung Medical University

MeSH Term

Rats
Animals
Polyurethanes
Wound Healing
Bandages
Diabetic Foot
Polyethylene Glycols
Diabetes Mellitus

Chemicals

polyurethane foam
Polymem
polyethyleneglycol-polyurethane
Polyurethanes
triethoxysilane
Polyethylene Glycols

Word Cloud

Created with Highcharts 10.0.0healingwoundPUESidressingabsorptionchronicdiabeticdressingspromotepolyurethanePEGAPTESPUEself-foamingPolyMemWoundnon-DMDMmodelsgroupsbetterpropertiesdeformationenhancedhighdelayedwoundsfootulcersDFUsclinicalproblemcansatisfyingdemandsexudatemanagementtissuegranulationThereforeaimstudypreparehigh-absorptionPUfoammodifiedpolyethyleneglycoltriethoxysilanePEG-modifiedPEG/APTES-modifiedpreparedreactionsGauzeusedcontrolsNextFouriertransform-infraredspectroscopythermomechanicalanalysesscanningelectronmicroscopytensilestrengthwateranti-proteinsurfacedrynessbiocompatibilitytestsperformedvitrocharacterizationeffectsinvestigatednondiabeticdiabetesmellitusratexhibitedphysicochemicalgauzeMoreovershowedanti-adhesioncapacityFurthermoreshortenedinflammatoryphasecollagendepositionanimalconcludefabricatedsimpleeffectivestrategyalsoviamicronegative-pressuregenerationcompacityMultifunctionalPolyethyleneGlycol/Triethoxysilane-ModifiedPolyurethaneFoamDressingHighAbsorbencyAntiadhesionPropertiesPromotesDiabeticHealingantiadhesionabsorbencynegativepressureporousstructurereaction

Similar Articles

Cited By