Single-cell analysis reveals key differences between early-stage and late-stage systemic sclerosis skin across autoantibody subgroups.

Kristina Elizabeth Neergaard Clark, Shiwen Xu, Moustafa Attah, Voon H Ong, Christopher Dominic Buckley, Christopher P Denton
Author Information
  1. Kristina Elizabeth Neergaard Clark: Centre for Rheumatology, Royal Free Campus, University College London, London, UK. ORCID
  2. Shiwen Xu: Centre for Rheumatology, Royal Free Campus, University College London, London, UK.
  3. Moustafa Attah: Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
  4. Voon H Ong: Centre for Rheumatology, Royal Free Campus, University College London, London, UK.
  5. Christopher Dominic Buckley: Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
  6. Christopher P Denton: Centre for Rheumatology, Royal Free Campus, University College London, London, UK c.denton@ucl.ac.uk. ORCID

Abstract

OBJECTIVES: The severity of skin involvement in diffuse cutaneous systemic sclerosis (dcSSc) depends on stage of disease and differs between anti-RNA-polymerase III (ARA) and anti-topoisomerase antibody (ATA) subsets. We have investigated cellular differences in well-characterised dcSSc patients compared with healthy controls (HCs).
METHODS: We performed single-cell RNA sequencing on 4 mm skin biopsy samples from 12 patients with dcSSc and HCs (n=3) using droplet-based sequencing (10× genomics). Patients were well characterised by stage (>5 or <5 years disease duration) and autoantibody (ATA+ or ARA+). Analysis of whole skin cell subsets and fibroblast subpopulations across stage and ANA subgroup were used to interpret potential cellular differences anchored by these subgroups.
RESULTS: Fifteen forearm skin biopsies were analysed. There was a clear separation of SSc samples, by disease, stage and antibody, for all cells and fibroblast subclusters. Further analysis revealed differing cell cluster gene expression profiles between ATA+ and ARA+ patients. Cell-to-cell interaction suggest differing interactions between early and late stages of disease and autoantibody. TGFβ response was mainly seen in fibroblasts and smooth muscle cells in early ATA+dcSSc skin samples, whereas in early ARA+dcSSc patient skin samples, the responding cells were endothelial, reflect broader differences between clinical phenotypes and distinct skin score trajectories across autoantibody subgroups of dcSSc.
CONCLUSIONS: We have identified cellular differences between the two main autoantibody subsets in dcSSc (ARA+ and ATA+). These differences reinforce the importance of considering autoantibody and stage of disease in management and trial design in SSc.

Keywords

References

  1. Lancet. 2016 Jun 25;387(10038):2630-2640 [PMID: 27156934]
  2. Arthritis Rheum. 2007 Jul;56(7):2422-31 [PMID: 17599771]
  3. Ann Rheum Dis. 2020 Mar;79(3):379-386 [PMID: 31767698]
  4. J Invest Dermatol. 2013 Aug;133(8):1979-89 [PMID: 23677167]
  5. Rheumatology (Oxford). 2022 Dec 23;62(1):19-28 [PMID: 35751592]
  6. Ann Rheum Dis. 2018 Apr;77(4):563-570 [PMID: 29306872]
  7. J Invest Dermatol. 2018 Apr;138(4):802-810 [PMID: 29080679]
  8. Arthritis Rheum. 2013 Nov;65(11):2737-47 [PMID: 24122180]
  9. Diagnostics (Basel). 2022 Apr 24;12(5): [PMID: 35626223]
  10. Nat Rev Rheumatol. 2010 Feb;6(2):112-6 [PMID: 20125179]
  11. Ann Rheum Dis. 2021 Dec;80(12):1584-1593 [PMID: 34230031]
  12. Lancet Respir Med. 2020 Oct;8(10):963-974 [PMID: 32866440]
  13. Arthritis Res Ther. 2018 Aug 29;20(1):187 [PMID: 30157947]
  14. Nat Commun. 2021 Jun 17;12(1):3709 [PMID: 34140509]
  15. J Rheumatol. 1988 Feb;15(2):202-5 [PMID: 3361530]
  16. Arthritis Res Ther. 2020 Nov 9;22(1):265 [PMID: 33168071]
  17. Arthritis Care Res (Hoboken). 2023 Jul;75(7):1469-1480 [PMID: 35997480]
  18. Rheumatology (Oxford). 2023 May 25;: [PMID: 37228011]
  19. Commun Biol. 2020 Apr 23;3(1):188 [PMID: 32327715]
  20. Cell. 2022 Apr 14;185(8):1373-1388.e20 [PMID: 35381199]
  21. Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12319-24 [PMID: 14530402]
  22. Nat Commun. 2021 Jul 19;12(1):4384 [PMID: 34282151]
  23. Arthritis Res Ther. 2015 Jun 13;17:159 [PMID: 26071192]
  24. Ann Rheum Dis. 2017 Jul;76(7):1207-1218 [PMID: 28188239]
  25. Ann Rheum Dis. 2018 Sep;77(9):1362-1371 [PMID: 29853453]
  26. Rheumatology (Oxford). 2019 Feb 1;58(2):254-259 [PMID: 30239834]
  27. Arthritis Rheumatol. 2015 Nov;67(11):3016-26 [PMID: 26238292]
  28. Ann Rheum Dis. 2014 Feb;73(2):420-7 [PMID: 23511226]
  29. Rheumatology (Oxford). 2023 Apr 3;62(4):1543-1551 [PMID: 36031807]
  30. Arthritis Rheumatol. 2020 Mar;72(3):465-476 [PMID: 31682743]
  31. Arthritis Res Ther. 2020 Nov 9;22(1):263 [PMID: 33168063]
  32. Rheumatology (Oxford). 2021 Aug 2;60(8):3945-3946 [PMID: 33734322]

Grants

  1. MR/T001631/1/Medical Research Council

MeSH Term

Humans
Autoantibodies
Scleroderma, Systemic
Scleroderma, Diffuse
Skin
Single-Cell Analysis

Chemicals

Autoantibodies

Word Cloud

Created with Highcharts 10.0.0skindifferencesautoantibodydcSScstagediseasesamplessubsetscellularpatientsATA+ARA+acrosssubgroupscellsearlysystemicsclerosisantibodyHCssequencingcellfibroblastSScanalysisdifferingOBJECTIVES:severityinvolvementdiffusecutaneousdependsdiffersanti-RNA-polymeraseIIIARAanti-topoisomeraseATAinvestigatedwell-characterisedcomparedhealthycontrolsMETHODS:performedsingle-cellRNA4 mmbiopsy12n=3usingdroplet-based10×genomicsPatientswellcharacterised>5<5yearsdurationAnalysiswholesubpopulationsANAsubgroupusedinterpretpotentialanchoredRESULTS:FifteenforearmbiopsiesanalysedclearseparationsubclustersrevealedclustergeneexpressionprofilesCell-to-cellinteractionsuggestinteractionslatestagesTGFβresponsemainlyseenfibroblastssmoothmuscleATA+dcSSc skinwhereasARA+dcSScpatientrespondingendothelialreflectbroaderclinicalphenotypesdistinctscoretrajectoriesCONCLUSIONS:identifiedtwomainreinforceimportanceconsideringmanagementtrialdesignSingle-cellrevealskeyearly-stagelate-stageAutoantibodiesFibroblastsSclerodermaSystemic

Similar Articles

Cited By