Methane (CH) is a potent greenhouse gas and its concentrations have tripled in the atmosphere since the industrial revolution. There is evidence that global warming has increased CH emissions from freshwater ecosystems, providing positive feedback to the global climate. Yet for rivers and streams, the controls and the magnitude of CH emissions remain highly uncertain. Here we report a spatially explicit global estimate of CH emissions from running waters, accounting for 27.9 (16.7-39.7) Tg CH per year and roughly equal in magnitude to those of other freshwater systems. Riverine CH emissions are not strongly temperature dependent, with low average activation energy (E = 0.14 eV) compared with that of lakes and wetlands (E = 0.96 eV). By contrast, global patterns of emissions are characterized by large fluxes in high- and low-latitude settings as well as in human-dominated environments. These patterns are explained by edaphic and climate features that are linked to anoxia in and near fluvial habitats, including a high supply of organic matter and water saturation in hydrologically connected soils. Our results highlight the importance of land-water connections in regulating CH supply to running waters, which is vulnerable not only to direct human modifications but also to several climate change responses on land.
References
Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).
[PMID: 24670769]
Zhu, Y. et al. Disproportionate increase in freshwater methane emissions induced by experimental warming. Nat. Clim. Change 10, 685–690 (2020).
[DOI: 10.1038/s41558-020-0824-y]
Stanley, E. H. et al. The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecol. Monogr. 86, 146–171 (2016).
[DOI: 10.1890/15-1027]
Rosentreter, J. A. et al. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat. Geosci. 14, 225–230 (2021).
[DOI: 10.1038/s41561-021-00715-2]
Johnson, M. S. et al. Spatiotemporal methane emission from global reservoirs. J. Geophys. Res. Biogeosci. 126, e2021JG006305 (2021).
[DOI: 10.1029/2021JG006305]
Johnson, M. S., Matthews, E., Du, J., Genovese, V. & Bastviken, D. Methane emission from global lakes: new spatiotemporal data and observation-driven modeling of methane dynamics indicates lower emissions. J. Geophys. Res. Biogeosci. 127, e2022JG006793 (2022).
[PMID: 36250198]
Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).
[DOI: 10.5194/essd-12-1561-2020]
Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 171–185 (2007).
[DOI: 10.1007/s10021-006-9013-8]
Borges, A. V. et al. Variations in dissolved greenhouse gases (CO, CH, NO) in the Congo River network overwhelmingly driven by fluvial-wetland connectivity. Biogeosciences 16, 3801–3834 (2019).
[DOI: 10.5194/bg-16-3801-2019]
Lupon, A. et al. Groundwater inflows control patterns and sources of greenhouse gas emissions from streams. Limnol. Oceanogr. 64, 1545–1557 (2019).
[DOI: 10.1002/lno.11134]
Crawford, J. T. et al. Spatial heterogeneity of within-stream methane concentrations. J. Geophys. Res. Biogeosci. 122, 1036–1048 (2017).
[DOI: 10.1002/2016JG003698]
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50 (2011).
[PMID: 21212349]
Stanley, E. H. et al. GRiMeDB: The global river database of methane concentrations and fluxes. Earth Syst. Sci. Data 15, 2879–2926 (2023).
Begum, M. S. et al. Localized pollution impacts on greenhouse gas dynamics in three anthropogenically modified Asian river systems. J. Geophys. Res. Biogeosci. 126, e2020JG006124 (2021).
[DOI: 10.1029/2020JG006124]
Borges, A. V. et al. Globally significant greenhouse-gas emissions from African inland waters. Nat. Geosci. 8, 637–642 (2015).
[DOI: 10.1038/ngeo2486]
Hamilton, S. K., Sippel, S. J. & Melack, J. M. Oxygen depletion and carbon dioxide and methane production in waters of the Pantanal wetland of Brazil. Biogeochemistry 30, 115–141 (1995).
[DOI: 10.1007/BF00002727]
Raymond, P. A. et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol. Oceanogr. Fluids Environ. 2, 41–53 (2012).
[DOI: 10.1215/21573689-1597669]
Crawford, J. T., Dornblaser, M. M., Stanley, E. H., Clow, D. W. & Striegl, R. G. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes. J. Geophys. Res. Biogeosci. 120, 952–964 (2015).
[DOI: 10.1002/2014JG002861]
Rocher-Ros, G., Sponseller, R. A., Lidberg, W., Mörth, C.-M. & Giesler, R. Landscape process domains drive patterns of CO evasion from river networks. Limnol. Oceanogr. Lett. 4, 87–95 (2019).
[DOI: 10.1002/lol2.10108]
Robison, A. L. et al. Spatial and temporal heterogeneity of methane ebullition in lowland headwater streams and the impact on sampling design. Limnol. Oceanogr. 66, 4063–4076 (2021).
[PMID: 35874272]
Aho, K. S. et al. Distinct concentration-discharge dynamics in temperate streams and rivers: CO exhibits chemostasis while CH exhibits source limitation due to temperature control. Limnol. Oceanogr. 66, 3656–3668 (2021).
[DOI: 10.1002/lno.11906]
Sieczko, A. K. et al. Diel variability of methane emissions from lakes. Proc. Natl Acad. Sci. USA 117, 21488–21494 (2020).
[PMID: 32817550]
Gareis, J. A. L. & Lesack, L. F. W. Ice-out and freshet fluxes of CO and CH across the air–water interface of the channel network of a great Arctic delta, the Mackenzie. Polar Res. https://doi.org/10.33265/polar.v39.3528 (2020).
Yang, X., Pavelsky, T. M. & Allen, G. H. The past and future of global river ice. Nature 577, 69–73 (2020).
[PMID: 31894147]
IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Zhang, L. et al. Significant methane ebullition from alpine permafrost rivers on the East Qinghai–Tibet Plateau. Nat. Geosci. 13, 349–354 (2020).
[DOI: 10.1038/s41561-020-0571-8]
Zhu, Y. et al. Separating natural from human enhanced methane emissions in headwater streams. Nat. Commun. 13, 3810 (2022).
[PMID: 35778387]
Fisher, S. G. & Likens, G. E. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol. Monogr. 43, 421–439 (1973).
[DOI: 10.2307/1942301]
Valett, H. M. et al. Endogenous and exogenous control of ecosystem function: N cycling in headwater streams. Ecology 89, 3515–3527 (2008).
[PMID: 19137956]
Shelley, F., Grey, J. & Trimmer, M. Widespread methanotrophic primary production in lowland chalk rivers. Proc. R. Soc. B 281, 20132854 (2014).
[PMID: 24695425]
Comer-Warner, S. A. et al. Thermal sensitivity of CO and CH emissions varies with streambed sediment properties. Nat. Commun. 9, 2803 (2018).
[PMID: 30022025]
DelSontro, T., Perez, K. K., Sollberger, S. & Wehrli, B. Methane dynamics downstream of a temperate run-of-the-river reservoir. Limnol. Oceanogr. 61, S188–S203 (2016).
[DOI: 10.1002/lno.10387]
Jin, H. et al. Longitudinal discontinuities in riverine greenhouse gas dynamics generated by dams and urban wastewater. Biogeosciences 15, 6349–6369 (2018).
[DOI: 10.5194/bg-15-6349-2018]
Zhang, Z. et al. Emerging role of wetland methane emissions in driving 21st century climate change. Proc. Natl Acad. Sci. USA 114, 9647–9652 (2017).
[PMID: 28827347]
Tan, Z. & Zhuang, Q. Methane emissions from pan‐Arctic lakes during the 21st century: an analysis with process‐based models of lake evolution and biogeochemistry. J. Geophys. Res. Biogeosci. 120, 2641–2653 (2015).
[DOI: 10.1002/2015JG003184]
Liu, S. et al. The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers. Proc. Natl Acad. Sci. USA 119, e2106322119 (2022).
[PMID: 35254912]
Lin, P. et al. Global reconstruction of naturalized river flows at 2.94 million reaches. Water Resour. Res. 55, 6499–6516 (2019).
[PMID: 31762499]
Thellman, A. et al. The ecology of river ice. J. Geophys. Res. Biogeosci. 126, e2021JG006275 (2021).
[DOI: 10.1029/2021JG006275]
Paranaíba, J. R. et al. Cross-continental importance of CH emissions from dry inland-waters. Sci. Total Environ. 814, 151925 (2022).
[PMID: 34838923]
Allen, G. H. et al. Similarity of stream width distributions across headwater systems. Nat. Commun. 9, 610 (2018).
[PMID: 29426914]
Stanley, E. H. et al. GRiMeDB: A Comprehensive Global Database of Methane Concentrations and Fluxes in Fluvial Ecosystems with Supporting Physical and Chemical Information (Environmental Data Initiative, 2022); https://doi.org/10.6073/pasta/b7d1fba4f9a3e365c9861ac3b58b4a90 .
Wright, M. N. & Ziegler, A. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).
Kuhn, M. & Wickham, H. tidymodels: a collection of packages for modeling and machine learning using tidyverse principles https://www.tidymodels.org (2020).
Greenwell, B. M. & Boehmke, B. C. Variable importance plots—an introduction to the vip package. R J. 12, 343–366 (2020).
[DOI: 10.32614/RJ-2020-013]
Biecek, P. DALEX: explainers for complex predictive models in R. J. Mach. Learn. Res. 19, 1–5 (2018).
Wager, S., Hastie, T. & Efron, B. Confidence intervals for random forests: the jackknife and the infinitesimal jackknife. J. Mach. Learn. Res. 15, 1625–1651 (2014).
[PMID: 25580094]
van den Hoogen, J. et al. A geospatial mapping pipeline for ecologists. Preprint at bioRxiv https://doi.org/10.1101/2021.07.07.451145 (2021).
Lan, X., Thoning, K. W. & Dlugokencky, E. J. Trends in globally-averaged CH, NO, and SF determined from NOAA Global Monitoring Laboratory measurements. v.2023-06. Global Monitoring Laboratory https://doi.org/10.15138/P8XG-AA10 (2022).
Flury, S. & Ulseth, A. J. Exploring the sources of unexpected high methane concentrations and fluxes from Alpine headwater streams. Geophys. Res. Lett. 46, 6614–6625 (2019).
[DOI: 10.1029/2019GL082428]
Ulseth, A. J. et al. Distinct air–water gas exchange regimes in low- and high-energy streams. Nat. Geosci. 12, 259–263 (2019).
[DOI: 10.1038/s41561-019-0324-8]
Chapra, S. C. & Di Toro, D. M. Delta method for estimating primary production, respiration, and reaeration in streams. J. Environ. Eng. 117, 640–655 (1991).
[DOI: 10.1061/(ASCE)0733-9372(1991)117]
R Core Team. R: A Language and Environment for Statistical Computing https://www.r-project.org/ (R Foundation for Statistical Computing, 2022).
Wickham, H., François, R., Henry, L. & Müller, K. dplyr: a grammar of data manipulation. R package version 1.0.7 https://dplyr.tidyverse.org/ (2021).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn (Springer, 2016).
Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J. Stat. Softw. 40, 1–25 (2011).
Kuhn, M., Jackson, S. & Cimentada, J. corrr: correlations in R. R package version 0.4.3 https://cran.r-project.org/web/packages/corrr/ (2020).
Wilke, C. O. ggtext: improved text rendering support for “ggplot2”. R package version 0.1.1 https://CRAN.R-project.org/package=ggtext (2020).
Kassambara, A. ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.4.0 https://github.com/kassambara/ggpubr (2020).
Pedersen, T. L. patchwork: the composer of plots. R package version 1.1.1 https://CRAN.R-project.org/package=patchwork (2020).
Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).
Hijmans, R. J. terra: spatial data analysis. R package version 1.4.11 https://cran.r-project.org/package=terra (2021).
South, A. rnaturalearth: world map data from natural Earth. R package version 0.1.0 https://cran.r-project.org/web/packages/rnaturalearth/ (2017).
Adler, C. et al. Monitoring mountains in a changing world: new horizons for the Global Network for Observations and Information on Mountain Environments (GEO-GNOME). Mt. Res. Dev. 38, 265–269 (2018).