Detection of Brain Tumor Employing Residual Network-based Optimized Deep Learning.

Saransh Rohilla, Shruti Jain
Author Information
  1. Saransh Rohilla: Department of Electronics and Communication Engineering, Jaypee University of Information Technology, Solan, Himachal Pradesh, India. ORCID
  2. Shruti Jain: Department of Electronics and Communication Engineering, Jaypee University of Information Technology, Solan, Himachal Pradesh, India. ORCID

Abstract

BACKGROUND: Diagnosis and treatment planning play a very vital role in improving the survival of oncological patients. However, there is high variability in the shape, size, and structure of the tumor, making automatic segmentation difficult. The automatic and accurate detection and segmentation methods for brain tumors are proposed in this paper.
METHODS: A modified ResNet50 model was used for tumor detection, and a ResUNetmodel-based convolutional neural network for segmentation is proposed in this paper. The detection and segmentation were performed on the same dataset consisting of pre-contrast, FLAIR, and postcontrast MRI images of 110 patients collected from the cancer imaging archive. Due to the use of residual networks, the authors observed improvement in evaluation parameters, such as accuracy for tumor detection and dice similarity coefficient for tumor segmentation.
RESULTS: The accuracy of tumor detection and dice similarity coefficient achieved by the segmentation model were 96.77% and 0.893, respectively, for the TCIA dataset. The results were compared based on manual segmentation and existing segmentation techniques. The tumor mask was also individually compared to the ground truth using the SSIM value. The proposed detection and segmentation models were validated on BraTS2015 and BraTS2017 datasets, and the results were consensus.
CONCLUSION: The use of residual networks in both the detection and the segmentation model resulted in improved accuracy and DSC score. DSC score was increased by 5.9% compared to the UNet model, and the accuracy of the model was increased from 92% to 96.77% for the test set.

Keywords

References

  1. Dogra J.; Jain S.; Sood M.; Gradient‐based kernel selection technique for tumour detection and extraction of medical images using graph cut. IET Image Process 2020,14(1),84-93 [DOI: 10.1049/iet-ipr.2018.6615]
  2. Rouse C.; Gittleman H.; Ostrom Q.T.; Kruchko C.; Barnholtz-Sloan J.S.; Years of potential life lost for brain and CNS tumors relative to other cancers in adults in the United States, 2010. Neuro-oncol 2016,18(1),70-77 [DOI: 10.1093/neuonc/nov249]
  3. Brain tumor facts. Available from: https://braintumor.org/brain-tumors/about-brain-tumors/brain-tumo r-facts/2022
  4. Dogra J.; Jain S.; Sharma A.; Kumar R.; Sood M.; Brain tumor detection from MR images employing fuzzy graph cut technique. Recent Advances in Computer Science and Communications 2020,13(3),362-369 [DOI: 10.2174/2213275912666181207152633]
  5. Vijan A.; Dubey P.; Jain S.; Comparative analysis of various image fusion techniques for Brain Magnetic Resonance Images. Procedia Computer Science 2020,167,413-422 [DOI: 10.1016/j.procs.2020.03.250]
  6. Jin Liu ; Min Li ; Jianxin Wang ; Fangxiang Wu ; Tianming Liu ; Yi Pan, ; A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci Technol 2014,19(6),578-595 [DOI: 10.1109/TST.2014.6961028]
  7. Liang Z-P.; Lauterbur P.C.; Principles of magnetic resonance imaging: A signal processing perspective 2000
  8. Drevelegas A.; Papanikolaou N.; Imaging modalities in brain tumorsImaging of Brain Tumors with Histological Correlations 2011,13-33 [DOI: 10.1007/978-3-540-87650-2_2]
  9. Dogra J.; Jain S.; Sood M.; Glioma classification of MRI brain tumor employing machine learning. Int J Innov Technol Explor Eng [IJITEE].2019,8(8),2676-2682
  10. Menze B.H.; Jakab A.; Bauer S.; Kalpathy-Cramer J.; Farahani K.; Kirby J.; Burren Y.; Porz N.; Slotboom J.; Wiest R.; et al.; The multimodal brain tumor image segmentation benchmark (brats). IEEE Transactions on Medical Imaging 2015,34(10),1993-2024 [DOI: 10.1109/tmi.2014.2377694]
  11. Bauer S.; Wiest R.; Nolte L.P.; Reyes M.; A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 2013,58(13),R97-R129 [DOI: 10.1088/0031-9155/58/13/R97]
  12. Angelini E.; Clatz O.; Mandonnet E.; Konukoglu E.; Capelle L.; Duffau H.; Glioma dynamics and computational models: A review of segmentation, registration, and in silico growth algorithms and their clinical applications. Curr Med Imaging Rev 2007,3(4),262-276 [DOI: 10.2174/157340507782446241]
  13. Prastawa M.; Bullitt E.; Ho S.; Gerig G.; Robust estimation for brain tumor segmentation. Lect Notes Comput Sci 2003,2879,530-537 [DOI: 10.1007/978-3-540-39903-2_65]
  14. Bauer S.; Nolte L-P.; Reyes M.; Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. Lecture Notes in Computer Science 2011,354-361 [DOI: 10.1007/978-3-642-23626-6_44]
  15. Zikic D.; Glocker B.; Konukoglu E.; Criminisi A.; Demiralp C.; Shotton J.; Thomas O.M.; Das T.; Jena R.; Price S.J.; Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2012 2012,369-376 [DOI: 10.1007/978-3-642-33454-2_46]
  16. McBee M.P.; Awan O.A.; Colucci A.T.; Ghobadi C.W.; Kadom N.; Kansagra A.P.; Tridandapani S.; Auffermann W.F.; deep learning in radiology. Acad Radiol 2018,25(11),1472-1480 [DOI: 10.1016/j.acra.2018.02.018]
  17. Mazurowski M.A.; Buda M.; Saha A.; Bashir M.R.; Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging 2019,49(4),939-954 [DOI: 10.1002/jmri.26534]
  18. Buda M.; Saha A.; Mazurowski M.A.; Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm. Comput Biol Med 2019,109,218-225 [DOI: 10.1016/j.compbiomed.2019.05.002]
  19. Havaei M.; Davy A.; Warde-Farley D.; Biard A.; Courville A.; Bengio Y.; Pal C.; Jodoin P.M.; Larochelle H.; Brain tumor segmentation with deep neural networks. Med Image Anal 2017,35,18-31 [DOI: 10.1016/j.media.2016.05.004]
  20. Havaei M.; Guizard N.; Larochelle H.; Jodoin P-M.; Deep learning trends for focal brain pathology segmentation in MRI. Lecture Notes in Computer Science 2016,125-148 [DOI: 10.1007/978-3-319-50478-0_6]
  21. Naser M.A.; Deen M.J.; Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images. Comput Biol Med 2020,121,103758 [DOI: 10.1016/j.compbiomed.2020.103758]
  22. Dogra J.; Shruti J.M.S.; Glioma extraction from MRI images employing GBKS graph cut technique. Visual Computer, Springer 2020,36,875-891 [DOI: 10.1007/s00371-019-01698-3]
  23. Ranjith G.; Parvathy R.; Vikas V.; Chandrasekharan K.; Nair S.; Machine learning methods for the classification of gliomas: Initial results using features extracted from MR spectroscopy. Neuroradiol J 2015,28(2),106-111 [DOI: 10.1177/1971400915576637]
  24. Pereira S.; Pinto A.; Alves V.; Silva C.A.; Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Transactions on Medical Imaging 2016,35(5),1240-1251 [DOI: 10.1109/TMI.2016.2538465]
  25. Ding Y.; Li C.; Yang Q.; Qin Z.; Qin Z.; How to improve the deep residual network to segment multi-modal brain tumor images. IEEE Access 2019,7,152821-152831 [DOI: 10.1109/ACCESS.2019.2948120]
  26. Razzak M.I.; Imran M.; Xu G.; Efficient brain tumor segmentation with multiscale two-pathway-group conventional neural networks. IEEE J Biomed Health Inform 2019,23(5),1911-1919 [DOI: 10.1109/JBHI.2018.2874033]
  27. Ye F.; Zheng Y.; Ye H.; Han X.; Li Y.; Wang J.; Pu J.; Parallel pathway dense neural network with weighted fusion structure for brain tumor segmentation. Neurocomputing 2021,425,1-11 [DOI: 10.1016/j.neucom.2020.11.005]
  28. Louis D.N.; Ohgaki H.; Wiestler O.D.; Cavenee W.K.; Burger P.C.; Jouvet A.; Scheithauer B.W.; Kleihues P.; The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007,114(2),97-109 [DOI: 10.1007/s00401-007-0243-4]
  29. Dogra J.; Jain S.; Sood M.; Novel seed selection techniques for MR brain image segmentation using graph cut. Comput Methods Biomech Biomed Eng Imaging Vis 2020,8(4),389-399 [DOI: 10.1080/21681163.2019.1697966]
  30. Wang Z.; Zou Y.; Peter X.; Hybrid dilation and attention residual U-Net for medical image segmentation. Comput Biol Med 2021,134,104449
  31. Jin Q.; Meng Z.; Sun C.; Cui H.; Su R.; Ra-unet, A hybrid deep attention-awarenetwork to extract liver and tumor in ct scans. Front Bioeng Biotechnol 2020,8,605132 [DOI: 10.3389/fbioe.2020.605132]
  32. Ronneberger O.; Fischer P.; Brox T.; U-net, Convolutional networks for biomedical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention 2015,234-241 [DOI: 10.1007/978-3-319-24574-4_28]
  33. Hinton G.E.; Salakhutdinov R.R.; Reducing the dimensionality of data with neural networks. Science 2006,313(5786),504-507 [DOI: 10.1126/science.1127647]
  34. Li D.; Dharmawan D.A.; Ng B.P.; Rahardja S.; Residual u-net for retinal vesselsegmentation 2019 IEEE International Conference on Image Processing (ICIP) 2019,1425-1429 [DOI: 10.1109/ICIP.2019.8803101]
  35. Kermi A.; Mahmoudi I.; Khadir M.T.; International MICCAI Brainlesion Workshop 2018,37-48
  36. Devalla S.K.; Renukanand P.K.; Sreedhar B.K.; Subramanian G.; Zhang L.; Perera S.; Mari J.M.; Chin K.S.; Tun T.A.; Strouthidis N.G.; Aung T.; Thiéry A.H.; Girard M.J.A.; DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images. Biomed Opt Express 2018,9(7),3244-3265 [DOI: 10.1364/BOE.9.003244]
  37. Aghalari M.; Aghagolzadeh A.; Ezoji M.; Brain tumor image segmentation via asymmetric/symmetric UNet based on two-pathway-residual blocks. Biomed Sig Process Cont 2021,69,102841
  38. Shen H.; Zhang J.; Zheng W.; Efficient symmetry-driven fully convolutional network for multimodal brain tumor segmentation. 2017 IEEE International Conference on Image Processing (ICIP) ,3864-3868 [DOI: 10.1109/ICIP.2017.8297006]
  39. Dice L.R.; Measures of the amount of ecologic association between species. Ecology 1945,26(3),297-302 [DOI: 10.2307/1932409]
  40. Wang Z.; Bovik A.C.; Sheikh H.R.; Simoncelli E.P.; Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 2004,13(4),600-612 [DOI: 10.1109/TIP.2003.819861]
  41. Batista J.; Vikić-Topić D.; Lučić B.; The difference between the accuracy of real and the corresponding random model is a useful parameter for validation of two-state classification model quality. Croat Chem Acta 2016,89(4),527-534 [DOI: 10.5562/cca3117]

MeSH Term

Humans
Deep Learning
Brain Neoplasms
Magnetic Resonance Imaging
Neural Networks, Computer
Image Processing, Computer-Assisted

Word Cloud

Created with Highcharts 10.0.0segmentationtumordetectionmodelaccuracyproposedcomparedpatientsautomaticpaperResNet50convolutionalneuralnetworkdatasetMRIuseresidualnetworksdicesimilaritycoefficient9677%resultsDSCscoreincreasedBrainBACKGROUND:DiagnosistreatmentplanningplayvitalroleimprovingsurvivaloncologicalHoweverhighvariabilityshapesizestructuremakingdifficultaccuratemethodsbraintumorsMETHODS:modifiedusedResUNetmodel-basedperformedconsistingpre-contrastFLAIRpostcontrastimages110collectedcancerimagingarchiveDueauthorsobservedimprovementevaluationparametersRESULTS:achieved0893respectivelyTCIAbasedmanualexistingtechniquesmaskalsoindividuallygroundtruthusingSSIMvaluemodelsvalidatedBraTS2015BraTS2017datasetsconsensusCONCLUSION:resultedimproved59%UNet92%testsetDetectionTumorEmployingResidualNetwork-basedOptimizedDeepLearningResUNetdeeplearning

Similar Articles

Cited By

No available data.