Dual-comb optomechanical spectroscopy.

Xinyi Ren, Jin Pan, Ming Yan, Jiteng Sheng, Cheng Yang, Qiankun Zhang, Hui Ma, Zhaoyang Wen, Kun Huang, Haibin Wu, Heping Zeng
Author Information
  1. Xinyi Ren: State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China.
  2. Jin Pan: State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China.
  3. Ming Yan: State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China. myan@lps.ecnu.edu.cn. ORCID
  4. Jiteng Sheng: State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China. jtsheng@lps.ecnu.edu.cn. ORCID
  5. Cheng Yang: State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China.
  6. Qiankun Zhang: State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China.
  7. Hui Ma: State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China.
  8. Zhaoyang Wen: State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China.
  9. Kun Huang: State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China. ORCID
  10. Haibin Wu: State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China. hbwu@phy.ecnu.edu.cn. ORCID
  11. Heping Zeng: State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China. hpzeng@phy.ecnu.edu.cn. ORCID

Abstract

Optical cavities are essential for enhancing the sensitivity of molecular absorption spectroscopy, which finds widespread high-sensitivity gas sensing applications. However, the use of high-finesse cavities confines the wavelength range of operation and prevents broader applications. Here, we take a different approach to ultrasensitive molecular spectroscopy, namely dual-comb optomechanical spectroscopy (DCOS), by integrating the high-resolution multiplexing capabilities of dual-comb spectroscopy with cavity optomechanics through photoacoustic coupling. By exciting the molecules photoacoustically with dual-frequency combs and sensing the molecular-vibration-induced ultrasound waves with a cavity-coupled mechanical resonator, we measure high-resolution broadband ( > 2 THz) overtone spectra for acetylene gas and obtain a normalized noise equivalent absorption coefficient of 1.71 × 10 cm·W·Hz with 30 GHz simultaneous spectral bandwidth. Importantly, the optomechanical resonator allows broadband dual-comb excitation. Our approach not only enriches the practical applications of the emerging cavity optomechanics technology but also offers intriguing possibilities for multi-species trace gas detection.

References

  1. Analyst. 2022 Mar 14;147(6):1024-1054 [PMID: 35188498]
  2. Nat Commun. 2022 Apr 21;13(1):2181 [PMID: 35449158]
  3. Photoacoustics. 2022 Jul 22;27:100387 [PMID: 36068805]
  4. Phys Rev Lett. 2020 Feb 7;124(5):053604 [PMID: 32083916]
  5. Phys Rev Lett. 2006 Sep 29;97(13):133601 [PMID: 17026032]
  6. Phys Chem Chem Phys. 2018 Nov 14;20(44):27849-27855 [PMID: 30398249]
  7. Nat Commun. 2019 Jan 10;10(1):132 [PMID: 30631070]
  8. Nat Commun. 2020 Jul 29;11(1):3781 [PMID: 32728047]
  9. Optica. 2016;3(4): [PMID: 34131580]
  10. Nat Commun. 2017 May 31;8:15331 [PMID: 28561065]
  11. Analyst. 2019 Mar 25;144(7):2291-2296 [PMID: 30816892]
  12. Nat Commun. 2020 Aug 20;11(1):4164 [PMID: 32820155]
  13. Opt Lett. 2019 Mar 1;44(5):1142-1145 [PMID: 30821733]
  14. Science. 2018 Sep 28;361(6409):1358-1363 [PMID: 30262499]
  15. Photoacoustics. 2022 Sep 21;28:100403 [PMID: 36164583]
  16. Nat Commun. 2020 Feb 12;11(1):847 [PMID: 32051415]
  17. Nat Commun. 2016 Jul 27;7:12311 [PMID: 27460277]
  18. Nat Commun. 2020 Jun 19;11(1):3152 [PMID: 32561738]
  19. Photoacoustics. 2022 Oct 31;28:100423 [PMID: 36386293]
  20. Sci Adv. 2018 Mar 02;4(3):e1701858 [PMID: 29511733]
  21. Appl Phys B. 2018;124(8):161 [PMID: 30956412]
  22. Phys Rev Lett. 2021 Feb 12;126(6):061301 [PMID: 33635693]

Grants

  1. 12022411/National Natural Science Foundation of China (National Science Foundation of China)
  2. 12222404, 11974115/National Natural Science Foundation of China (National Science Foundation of China)
  3. 11925401, 12234008/National Natural Science Foundation of China (National Science Foundation of China)
  4. 62035005/National Natural Science Foundation of China (National Science Foundation of China)
  5. 2019SHZDZX01/Science and Technology Commission of Shanghai Municipality (Shanghai Municipal Science and Technology Commission)

Word Cloud

Created with Highcharts 10.0.0spectroscopygasapplicationsdual-comboptomechanicalcavitiesmolecularabsorptionsensingapproachhigh-resolutioncavityoptomechanicsresonatorbroadbandOpticalessentialenhancingsensitivityfindswidespreadhigh-sensitivityHoweverusehigh-finesseconfineswavelengthrangeoperationpreventsbroadertakedifferentultrasensitivenamelyDCOSintegratingmultiplexingcapabilitiesphotoacousticcouplingexcitingmoleculesphotoacousticallydual-frequencycombsmolecular-vibration-inducedultrasoundwavescavity-coupledmechanicalmeasure > 2 THzovertonespectraacetyleneobtainnormalizednoiseequivalentcoefficient171 × 10 cm·W·Hz30 GHzsimultaneousspectralbandwidthImportantlyallowsexcitationenrichespracticalemergingtechnologyalsooffersintriguingpossibilitiesmulti-speciestracedetectionDual-comb

Similar Articles

Cited By (4)