Decision trees for early prediction of inadequate immune response to coronavirus infections: a pilot study on COVID-19.

Fabio Pisano, Barbara Cannas, Alessandra Fanni, Manuela Pasella, Beatrice Canetto, Sabrina Rita Giglio, Stefano Mocci, Luchino Chessa, Andrea Perra, Roberto Littera
Author Information
  1. Fabio Pisano: Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy.
  2. Barbara Cannas: Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy.
  3. Alessandra Fanni: Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy.
  4. Manuela Pasella: Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy.
  5. Beatrice Canetto: BithiaTec Technologies, Elmas, Italy.
  6. Sabrina Rita Giglio: Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.
  7. Stefano Mocci: Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.
  8. Luchino Chessa: AART-ODV (Association for the Advancement of Research on Transplantation), Cagliari, Italy.
  9. Andrea Perra: AART-ODV (Association for the Advancement of Research on Transplantation), Cagliari, Italy.
  10. Roberto Littera: AART-ODV (Association for the Advancement of Research on Transplantation), Cagliari, Italy.

Abstract

Introduction: Few artificial intelligence models exist to predict severe forms of COVID-19. Most rely on post-infection laboratory data, hindering early treatment for high-risk individuals.
Methods: This study developed a machine learning model to predict inherent risk of severe symptoms after contracting SARS-CoV-2. Using a Decision Tree trained on 153 Alpha variant patients, demographic, clinical and immunogenetic markers were considered. Model performance was assessed on Alpha and Delta variant datasets. Key risk factors included age, gender, absence of KIR2DS2 gene (alone or with HLA-C C1 group alleles), presence of 14-bp polymorphism in HLA-G gene, presence of KIR2DS5 gene, and presence of KIR telomeric region A/A.
Results: The model achieved 83.01% accuracy for Alpha variant and 78.57% for Delta variant, with True Positive Rates of 80.82 and 77.78%, and True Negative Rates of 85.00% and 79.17%, respectively. The model showed high sensitivity in identifying individuals at risk.
Discussion: The present study demonstrates the potential of AI algorithms, combined with demographic, epidemiologic, and immunogenetic data, in identifying individuals at high risk of severe COVID-19 and facilitating early treatment. Further studies are required for routine clinical integration.

Keywords

References

  1. Neuroinformatics. 2019 Jan;17(1):27-42 [PMID: 29721680]
  2. J Med Internet Res. 2021 May 27;23(5):e25988 [PMID: 33872186]
  3. Nat Commun. 2020 Oct 6;11(1):5033 [PMID: 33024092]
  4. Diagnostics (Basel). 2020 Apr 16;10(4): [PMID: 32316113]
  5. PLoS One. 2022 Jul 29;17(7):e0269813 [PMID: 35905072]
  6. Front Immunol. 2020 Dec 04;11:605688 [PMID: 33343579]
  7. Pathogens. 2021 May 21;10(6): [PMID: 34064300]
  8. J Innate Immun. 2020;12(1):4-20 [PMID: 31610541]
  9. JAMA Netw Open. 2021 Oct 1;4(10):e2128568 [PMID: 34643720]
  10. Open Respir Arch. 2022 Feb 06;4(2):100162 [PMID: 37497317]
  11. Leuk Res. 2017 Oct;61:1-5 [PMID: 28841441]
  12. Neurocomputing (Amst). 2022 Oct 28;511:142-154 [PMID: 36097509]
  13. Comput Methods Programs Biomed. 2021 Sep;209:106336 [PMID: 34403841]
  14. J Clin Virol. 2020 Jul;128:104431 [PMID: 32442756]
  15. J Med Virol. 2020 Nov;92(11):2473-2488 [PMID: 32530509]
  16. Diagnostics (Basel). 2022 Nov 08;12(11): [PMID: 36359571]
  17. PLoS One. 2021 Aug 5;16(8):e0255608 [PMID: 34352002]
  18. Int J Infect Dis. 2021 Mar;104:262-268 [PMID: 33434673]
  19. Array (N Y). 2023 Mar;17:100271 [PMID: 36530931]
  20. JMIR Med Inform. 2021 Apr 13;9(4):e25884 [PMID: 33779565]
  21. Front Med (Lausanne). 2021 May 25;8:663145 [PMID: 34113636]
  22. Comput Methods Programs Biomed. 2021 Apr;202:105996 [PMID: 33631640]
  23. Blood. 2010 Oct 7;116(14):2411-9 [PMID: 20581313]
  24. Comput Biol Med. 2020 Jun;121:103792 [PMID: 32568675]
  25. Comput Methods Programs Biomed. 2021 Sep;209:106348 [PMID: 34391998]
  26. Nat Rev Immunol. 2020 Jul;20(7):401-403 [PMID: 32533109]
  27. Front Immunol. 2023 Jun 05;14:1138559 [PMID: 37342325]
  28. Front Immunol. 2020 Jul 08;11:1178 [PMID: 32733439]
  29. BMJ. 2020 Apr 7;369:m1328 [PMID: 32265220]
  30. Immunity. 2020 Jul 14;53(1):19-25 [PMID: 32610079]
  31. Sensors (Basel). 2022 Feb 05;22(3): [PMID: 35161951]
  32. Clin Infect Dis. 2023 Feb 8;76(3):e342-e349 [PMID: 35653428]
  33. Sci Rep. 2021 Jun 17;11(1):12801 [PMID: 34140592]
  34. Cell. 2021 Apr 15;184(8):2201-2211.e7 [PMID: 33743891]
  35. medRxiv. 2021 Jun 17;: [PMID: 34159342]
  36. Front Artif Intell. 2020 Aug 18;3:65 [PMID: 33733182]
  37. Front Immunol. 2020 Aug 14;11:2033 [PMID: 32922406]
  38. BMJ. 2020 Apr 14;369:m1464 [PMID: 32291266]
  39. Nat Med. 2020 Jul;26(7):1037-1040 [PMID: 32393804]
  40. Comput Methods Programs Biomed. 2022 Jan;213:106495 [PMID: 34798406]
  41. Eur Respir J. 2020 Aug 20;56(2): [PMID: 32616597]
  42. PLoS One. 2010 Dec 29;5(12):e15115 [PMID: 21206914]
  43. Inform Med Unlocked. 2021;24:100564 [PMID: 33842685]
  44. Math Biosci Eng. 2022 Apr 13;19(6):6102-6123 [PMID: 35603393]
  45. Biometrics. 1999 Jun;55(2):597-602 [PMID: 11318220]
  46. BMJ Health Care Inform. 2021 Apr;28(1): [PMID: 33853863]
  47. Front Immunol. 2020 Dec 16;11:610300 [PMID: 33391280]
  48. BMJ Open. 2021 Jan 11;11(1):e044640 [PMID: 33431495]
  49. J Clin Med. 2022 Aug 05;11(15): [PMID: 35956189]
  50. Clin Radiol. 2023 Feb;78(2):150-157 [PMID: 36639173]

Word Cloud

Created with Highcharts 10.0.0COVID-19riskvariantsevereearlyindividualsstudymodelAlphaimmunogeneticgenepresenceartificialintelligencepredictdatatreatmentSARS-CoV-2DecisiondemographicclinicalDeltaTrueRateshighidentifyingtreesIntroduction:modelsexistformsrelypost-infectionlaboratoryhinderinghigh-riskMethods:developedmachinelearninginherentsymptomscontractingUsingTreetrained153patientsmarkersconsideredModelperformanceassesseddatasetsKeyfactorsincludedagegenderabsenceKIR2DS2aloneHLA-CC1groupalleles14-bppolymorphismHLA-GKIR2DS5KIRtelomericregionA/AResults:achieved8301%accuracy7857%Positive80827778%Negative8500%7917%respectivelyshowedsensitivityDiscussion:presentdemonstratespotentialAIalgorithmscombinedepidemiologicfacilitatingstudiesrequiredroutineintegrationpredictioninadequateimmuneresponsecoronavirusinfections:pilotdecisiondiseaseseveritybackground

Similar Articles

Cited By