Protective effects of zingerone against sodium arsenite-induced lung toxicity: A multi-biomarker approach.

Hasan Şimşek, Sefa Küçükler, Cihan Gür, Mustafa İleritürk, Serpil Aygörmez, Fatih Mehmet Kandemir
Author Information
  1. Hasan Şimşek: Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Türkiye.
  2. Sefa Küçükler: Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Türkiye.
  3. Cihan Gür: Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Türkiye.
  4. Mustafa İleritürk: Department of Animal Science, Horasan Vocational College, Ataturk University, Erzurum, Türkiye.
  5. Serpil Aygörmez: Department of Veterinary Biochemistry, Faculty of Veterinary, Kafkas University, Kars, Türkiye.
  6. Fatih Mehmet Kandemir: Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Türkiye.

Abstract

Objectives: Sodium arsenite (SA) exposure is toxic to the body. Zingerone (ZNG) is a flavonoid with many biological properties found naturally in honey and plants. This study aimed to determine the effects of ZNG on SA-induced rat lung toxicity.
Materials and Methods: Thirty-five male Sprague rats were divided into Control, SA, ZNG, SA+ZNG25, and SA+ZNG50 groups (n=7). SA 10 mg/kg and ZNG were administered at two doses (25 and 50 mg/kg) (orally, 14 days). Analysis of oxidative stress, inflammation damage, apoptosis damage, and autophagic damage markers in lung tissue were determined by biochemical and histological methods.
Results: The administration of ZNG reduced oxidative stress by increasing SA-induced decreased antioxidant enzyme activities, increasing Nrf-2, HO-1, and NQO1, and decreasing MDA level. ZNG administration reduced inflammation marker levels. Anti-apoptotic Bcl-2 increased and apoptotic Bax and Caspase-3 decreased with ZNG. ZNG promoted the regression of autophagy by reducing Beclin-1, LC3A, and LC3B levels.
Conclusion: Evaluating all data showed that SA caused toxic damage to lung tissue by increasing inflammation, apoptosis, autophagy, and oxidant levels, whereas ZNG had a protective effect by reducing this damage.

Keywords

References

  1. Andrologia. 2020 Apr;52(3):e13524 [PMID: 32022330]
  2. Biol Trace Elem Res. 2021 Apr;199(4):1501-1514 [PMID: 32613487]
  3. Gene. 2023 Jul 30;875:147502 [PMID: 37224935]
  4. J Food Biochem. 2021 Feb;45(2):e13593 [PMID: 33368351]
  5. Chem Biol Interact. 2009 Oct 7;181(2):254-62 [PMID: 19577553]
  6. Anal Biochem. 1968 Oct 24;25(1):192-205 [PMID: 4973948]
  7. Mol Pharmacol. 2008 Dec;74(6):1564-75 [PMID: 18799798]
  8. Life Sci. 2020 Oct 15;259:118382 [PMID: 32898532]
  9. J Trace Elem Med Biol. 2019 Dec;56:60-68 [PMID: 31442956]
  10. J Trace Elem Med Biol. 2019 Jul;54:69-78 [PMID: 31109623]
  11. Toxicon. 2022 May;211:50-60 [PMID: 35331755]
  12. Environ Sci Pollut Res Int. 2021 Mar;28(9):10818-10831 [PMID: 33099738]
  13. Anal Biochem. 1966 Aug;16(2):359-64 [PMID: 6007581]
  14. Biochem Biophys Res Commun. 1989 Nov 30;165(1):43-50 [PMID: 2590239]
  15. Exp Toxicol Pathol. 2017 Feb;69(2):93-97 [PMID: 27908582]
  16. J Food Biochem. 2022 Jul;46(7):e14149 [PMID: 35338494]
  17. Sci Total Environ. 2021 Feb 20;756:143840 [PMID: 33261869]
  18. Environ Sci Pollut Res Int. 2020 Apr;27(10):10950-10965 [PMID: 31953765]
  19. Genes Dev. 2013 Oct 15;27(20):2179-91 [PMID: 24142871]
  20. Toxicol Res (Camb). 2021 Feb 17;10(2):277-283 [PMID: 33884178]
  21. Int J Clin Exp Med. 2015 Dec 15;8(12):22158-66 [PMID: 26885190]
  22. Arch Physiol Biochem. 2021 Jun;127(3):258-265 [PMID: 31240966]
  23. Environ Toxicol. 2022 Nov;37(11):2639-2650 [PMID: 35876585]
  24. Andrologia. 2021 Mar;53(2):e13900 [PMID: 33263200]
  25. Environ Toxicol. 2022 Mar;37(3):401-412 [PMID: 34748272]
  26. Environ Sci Pollut Res Int. 2020 Apr;27(10):10607-10616 [PMID: 31942715]
  27. Naunyn Schmiedebergs Arch Pharmacol. 2020 Sep;393(9):1659-1670 [PMID: 32377772]
  28. Sci Rep. 2020 Aug 3;10(1):13045 [PMID: 32747644]
  29. Toxicol In Vitro. 2020 Sep;67:104925 [PMID: 32599262]
  30. Front Immunol. 2023 Aug 22;14:1225348 [PMID: 37675120]
  31. Int J Mol Sci. 2017 Jul 10;18(7): [PMID: 28698525]
  32. Oxid Med Cell Longev. 2019 Nov 13;2019:4724920 [PMID: 31814878]
  33. Life Sci. 2019 Jan 15;217:91-100 [PMID: 30472295]
  34. Biochem Biophys Rep. 2019 Dec 10;21:100718 [PMID: 31886417]
  35. Biochem Biophys Res Commun. 2019 Oct 20;518(3):526-532 [PMID: 31445708]
  36. Biomed Pharmacother. 2020 Jan;121:109669 [PMID: 31766100]
  37. Environ Toxicol. 2023 May;38(5):1162-1173 [PMID: 36757007]
  38. Neurotoxicology. 2020 Jan;76:126-137 [PMID: 31722249]
  39. Chem Biol Interact. 2023 Apr 1;374:110410 [PMID: 36822304]
  40. Food Chem Toxicol. 2019 Apr;126:41-55 [PMID: 30769048]
  41. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  42. Andrologia. 2017 Feb;49(1): [PMID: 27106863]
  43. Z Naturforsch C J Biosci. 2015 Jul 1;70(7-8):175-81 [PMID: 26439596]
  44. Biol Trace Elem Res. 2019 May;189(1):95-108 [PMID: 30066062]
  45. Toxicol Rep. 2021 Apr 02;8:774-784 [PMID: 33854955]
  46. Biomed Pharmacother. 2018 Oct;106:443-453 [PMID: 29990832]
  47. Biochem Biophys Res Commun. 2012 Aug 31;425(3):503-9 [PMID: 22925666]
  48. Methods Enzymol. 1984;105:121-6 [PMID: 6727660]
  49. Environ Toxicol. 2021 Feb;36(2):204-212 [PMID: 32930475]
  50. Hum Exp Toxicol. 2019 Apr;38(4):482-493 [PMID: 30558456]
  51. J Biol Chem. 1951 Nov;193(1):265-75 [PMID: 14907713]
  52. Aquat Toxicol. 2004 Jul 30;69(1):67-79 [PMID: 15210298]
  53. Environ Sci Pollut Res Int. 2019 Aug;26(22):22562-22574 [PMID: 31165450]
  54. Reprod Toxicol. 2023 Jun;118:108369 [PMID: 36966900]
  55. Int Immunopharmacol. 2014 Mar;19(1):103-9 [PMID: 24412620]
  56. Clin Chem. 1988 Mar;34(3):497-500 [PMID: 3349599]
  57. J Ethnopharmacol. 2018 Oct 28;225:234-243 [PMID: 29981433]

Word Cloud

Created with Highcharts 10.0.0ZNGdamageSAlungstressinflammationincreasinglevelsSodiumarsenitetoxicZingeroneeffectsSA-inducedmg/kgoxidativeapoptosistissueadministrationreduceddecreasedautophagyreducingObjectives:exposurebodyflavonoidmanybiologicalpropertiesfoundnaturallyhoneyplantsstudyaimeddeterminerattoxicityMaterialsMethods:Thirty-fivemaleSpragueratsdividedControlSA+ZNG25SA+ZNG50groupsn=710administeredtwodoses2550orally14daysAnalysisautophagicmarkersdeterminedbiochemicalhistologicalmethodsResults:antioxidantenzymeactivitiesNrf-2HO-1NQO1decreasingMDAlevelmarkerAnti-apoptoticBcl-2increasedapoptoticBaxCaspase-3promotedregressionBeclin-1LC3ALC3BConclusion:EvaluatingdatashowedcausedoxidantwhereasprotectiveeffectProtectivezingeronesodiumarsenite-inducedtoxicity:multi-biomarkerapproachApoptosisAutophagyInflammationLungOxidativeToxicity

Similar Articles

Cited By