Ultra-Fast Approximate Inference Using Variational Functional Mixed Models.

Shuning Huo, Jeffrey S Morris, Hongxiao Zhu
Author Information
  1. Shuning Huo: Department of Statistics, Virginia Tech.
  2. Jeffrey S Morris: Department of Biostatistics, Epidemiology and Informatics, Department of Statistics, University of Pennsylvania.
  3. Hongxiao Zhu: Department of Statistics, Virginia Tech.

Abstract

While Bayesian functional mixed models have been shown effective to model functional data with various complex structures, their application to extremely high-dimensional data is limited due to computational challenges involved in posterior sampling. We introduce a new computational framework that enables ultra-fast approximate inference for high-dimensional data in functional form. This framework adopts parsimonious basis to represent functional observations, which facilitates efficient compression and parallel computing in basis space. Instead of performing expensive Markov chain Monte Carlo sampling, we approximate the posterior distribution using variational Bayes and adopt a fast iterative algorithm to estimate parameters of the approximate distribution. Our approach facilitates a fast multiple testing procedure in basis space, which can be used to identify significant local regions that reflect differences across groups of samples. We perform two simulation studies to assess the performance of approximate inference, and demonstrate applications of the proposed approach by using a proteomic mass spectrometry dataset and a brain imaging dataset. Supplementary materials are available online.

Keywords

References

  1. J Am Stat Assoc. 2020;115(529):90-106 [PMID: 32981991]
  2. J R Stat Soc Series B Stat Methodol. 2006 Apr 1;68(2):179-199 [PMID: 19759841]
  3. Neuroimage. 2018 Nov 1;181:501-512 [PMID: 30057352]
  4. Biometrics. 2015 Sep;71(3):563-74 [PMID: 25787146]
  5. J Am Stat Assoc. 2010 Mar 1;105(489):390-400 [PMID: 20396628]
  6. Stat Modelling. 2017 Feb;17(1-2):59-85 [PMID: 28736502]
  7. Neuroimage. 2010 Nov 15;53(3):1160-74 [PMID: 20171287]
  8. Bioinformatics. 2005 May 1;21(9):1764-75 [PMID: 15673564]
  9. Biometrics. 2002 Mar;58(1):121-8 [PMID: 11890306]
  10. Ann Appl Stat. 2011 Jan 1;5(2A):894-923 [PMID: 22408711]
  11. J Am Stat Assoc. 2006 Dec 1;101(476):1352-1364 [PMID: 19169424]
  12. J Am Stat Assoc. 2019;114(526):495-513 [PMID: 31235987]
  13. Electron J Stat. 2011 Jan 1;5:572-602 [PMID: 22163061]
  14. J Am Stat Assoc. 2016;111(514):772-786 [PMID: 28018013]
  15. J Acoust Soc Am. 2015 Feb;137(2):EL178-83 [PMID: 25698047]
  16. J Comput Graph Stat. 2014;23(1):249-269 [PMID: 24729671]
  17. Comput Stat Data Anal. 2017 Jul;111:88-101 [PMID: 29051679]
  18. J Am Stat Assoc. 2013 Jun 1;108(502):514-526 [PMID: 23997376]
  19. Biometrics. 2008 Jun;64(2):479-89 [PMID: 17888041]
  20. Biometrics. 2012 Dec;68(4):1260-8 [PMID: 22670567]
  21. J Am Stat Assoc. 2011 Sep 1;106(495):1167-1179 [PMID: 22308015]
  22. Stat Interface. 2016;9(4):399-414 [PMID: 27695593]

Grants

  1. R01 CA178744/NCI NIH HHS
  2. R01 CA244845/NCI NIH HHS
  3. UL1 TR001878/NCATS NIH HHS

Word Cloud

Created with Highcharts 10.0.0functionalapproximatedatabasisInferenceBayesianhigh-dimensionalcomputationalposteriorsamplingframeworkinferencefacilitatesspacedistributionusingBayesfastapproachdatasetApproximateVariationalFunctionalmixedmodelsshowneffectivemodelvariouscomplexstructuresapplicationextremelylimitedduechallengesinvolvedintroducenewenablesultra-fastformadoptsparsimoniousrepresentobservationsefficientcompressionparallelcomputingInsteadperformingexpensiveMarkovchainMonteCarlovariationaladoptiterativealgorithmestimateparametersmultipletestingprocedurecanusedidentifysignificantlocalregionsreflectdifferencesacrossgroupssamplesperformtwosimulationstudiesassessperformancedemonstrateapplicationsproposedproteomicmassspectrometrybrainimagingSupplementarymaterialsavailableonlineUltra-FastUsingMixedModelsDistributedDataAnalysisParallelComputing

Similar Articles

Cited By

No available data.