CellAnn: a comprehensive, super-fast, and user-friendly single-cell annotation web server.

Pin Lyu, Yijie Zhai, Taibo Li, Jiang Qian
Author Information
  1. Pin Lyu: Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States. ORCID
  2. Yijie Zhai: Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
  3. Taibo Li: Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, United States. ORCID
  4. Jiang Qian: Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States. ORCID

Abstract

MOTIVATION: Single-cell sequencing technology has become a routine in studying many biological problems. A core step of analyzing single-cell data is the assignment of cell clusters to specific cell types. Reference-based methods are proposed for predicting cell types for single-cell clusters. However, the scalability and lack of preprocessed reference datasets prevent them from being practical and easy to use.
RESULTS: Here, we introduce a reference-based cell annotation web server, CellAnn, which is super-fast and easy to use. CellAnn contains a comprehensive reference database with 204 human and 191 mouse single-cell datasets. These reference datasets cover 32 organs. Furthermore, we developed a cluster-to-cluster alignment method to transfer cell labels from the reference to the query datasets, which is superior to the existing methods with higher accuracy and higher scalability. Finally, CellAnn is an online tool that integrates all the procedures in cell annotation, including reference searching, transferring cell labels, visualizing results, and harmonizing cell annotation labels. Through the user-friendly interface, users can identify the best annotation by cross-validating with multiple reference datasets. We believe that CellAnn can greatly facilitate single-cell sequencing data analysis.
AVAILABILITY AND IMPLEMENTATION: The web server is available at www.cellann.io, and the source code is available at https://github.com/Pinlyu3/CellAnn_shinyapp.

References

  1. Science. 2020 Nov 20;370(6519): [PMID: 33004674]
  2. Nucleic Acids Res. 2021 Dec 2;49(21):e122 [PMID: 34500471]
  3. Database (Oxford). 2019 Jan 1;2019: [PMID: 30951143]
  4. Bioinformatics. 2020 Jan 15;36(2):533-538 [PMID: 31359028]
  5. Exp Eye Res. 2019 Jul;184:234-242 [PMID: 31075224]
  6. Nucleic Acids Res. 2019 Sep 19;47(16):e95 [PMID: 31226206]
  7. Nucleic Acids Res. 2022 May 6;50(8):e43 [PMID: 34986249]
  8. Nat Commun. 2017 Jan 16;8:14049 [PMID: 28091601]
  9. Nature. 2017 Oct 18;550(7677):451-453 [PMID: 29072289]
  10. Genome Biol. 2021 Feb 22;22(1):69 [PMID: 33618746]
  11. Nat Rev Cancer. 2017 Aug 24;17(9):557-569 [PMID: 28835719]
  12. Nat Immunol. 2019 Feb;20(2):163-172 [PMID: 30643263]
  13. Nat Biotechnol. 2022 Feb;40(2):163-166 [PMID: 35132262]
  14. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  15. BMC Bioinformatics. 2021 Jul 8;22(1):364 [PMID: 34238220]
  16. Genome Res. 2021 Oct;31(10):1781-1793 [PMID: 33627475]
  17. Nat Commun. 2020 Apr 14;11(1):1818 [PMID: 32286268]
  18. Nature. 2020 May;581(7808):303-309 [PMID: 32214235]
  19. Nat Commun. 2022 Mar 10;13(1):1246 [PMID: 35273156]
  20. Cell Syst. 2019 Aug 28;9(2):207-213.e2 [PMID: 31377170]
  21. Nucleic Acids Res. 2014 Aug;42(14):8845-60 [PMID: 25053837]
  22. Mol Syst Biol. 2020 Jun;16(6):e9389 [PMID: 32567229]
  23. Cell. 2021 Jun 24;184(13):3573-3587.e29 [PMID: 34062119]
  24. Nat Methods. 2018 May;15(5):359-362 [PMID: 29608555]
  25. Trends Mol Med. 2017 Jun;23(6):563-576 [PMID: 28501348]
  26. Nat Methods. 2018 Dec;15(12):1053-1058 [PMID: 30504886]
  27. Cell Rep. 2020 Jan 28;30(4):1246-1259.e6 [PMID: 31995762]
  28. Nucleic Acids Res. 2019 Jan 8;47(D1):D721-D728 [PMID: 30289549]
  29. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34913057]
  30. Genome Biol. 2019 Sep 9;20(1):194 [PMID: 31500660]
  31. Genome Biol. 2016 Apr 15;17:71 [PMID: 27083874]
  32. Genome Biol. 2019 Dec 12;20(1):264 [PMID: 31829268]
  33. iScience. 2020 Mar 27;23(3):100882 [PMID: 32062421]
  34. Nat Commun. 2021 Sep 28;12(1):5675 [PMID: 34584087]
  35. Genomics Proteomics Bioinformatics. 2021 Apr;19(2):267-281 [PMID: 33359678]
  36. Nat Rev Nephrol. 2018 Aug;14(8):479-492 [PMID: 29789704]
  37. BMC Bioinformatics. 2020 Sep 17;21(Suppl 13):392 [PMID: 32938367]
  38. Nat Methods. 2019 Oct;16(10):1007-1015 [PMID: 31501550]
  39. Nucleic Acids Res. 2019 May 7;47(8):e48 [PMID: 30799483]

Grants

  1. R01 EY029548/NEI NIH HHS

MeSH Term

Humans
Animals
Mice
Computers
Software
Databases, Factual
Single-Cell Analysis

Word Cloud

Created with Highcharts 10.0.0cellreferencesingle-celldatasetsannotationCellAnnwebserverlabelssequencingdataclusterstypesmethodsscalabilityeasyusesuper-fastcomprehensivehigheruser-friendlycanavailableMOTIVATION:Single-celltechnologybecomeroutinestudyingmanybiologicalproblemscorestepanalyzingassignmentspecificReference-basedproposedpredictingHoweverlackpreprocessedpreventpracticalRESULTS:introducereference-basedcontainsdatabase204human191mousecover32organsFurthermoredevelopedcluster-to-clusteralignmentmethodtransferquerysuperiorexistingaccuracyFinallyonlinetoolintegratesproceduresincludingsearchingtransferringvisualizingresultsharmonizinginterfaceusersidentifybestcross-validatingmultiplebelievegreatlyfacilitateanalysisAVAILABILITYANDIMPLEMENTATION:wwwcellanniosourcecodehttps://githubcom/Pinlyu3/CellAnn_shinyappCellAnn:

Similar Articles

Cited By