Reduced thalamic excitation to motor cortical pyramidal tract neurons in parkinsonism.

Liqiang Chen, Samuel Daniels, Rachel Dvorak, Hong-Yuan Chu
Author Information
  1. Liqiang Chen: Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503 USA. ORCID
  2. Samuel Daniels: Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503 USA. ORCID
  3. Rachel Dvorak: Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503 USA. ORCID
  4. Hong-Yuan Chu: Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503 USA. ORCID

Abstract

Degeneration of midbrain dopaminergic (DA) neurons alters the connectivity and functionality of the basal ganglia-thalamocortical circuits in Parkinson's disease (PD). Particularly, the aberrant outputs of the primary motor cortex (M1) contribute to parkinsonian motor deficits. However, cortical adaptations at cellular and synaptic levels in parkinsonism remain poorly understood. Using multidisciplinary approaches, we found that DA degeneration induces cell subtype- and input-specific reduction of thalamic excitation to M1 pyramidal tract (PT) neurons. At molecular level, we identified that -methyl-d-aspartate (NMDA) receptors play a key role in mediating the reduced thalamocortical excitation to PT neurons. At circuit level, we showed that the reduced thalamocortical transmission in parkinsonian mice can be rescued by chemogenetically suppressing basal ganglia outputs. Together, our data suggest that cell subtype- and synapse-specific adaptations in M1 contribute to altered cortical outputs in parkinsonism and are important aspects of PD pathophysiology.

References

  1. J Neurosci. 2011 Mar 23;31(12):4544-54 [PMID: 21430155]
  2. Annu Rev Neurosci. 2013 Jul 8;36:337-59 [PMID: 23725001]
  3. Curr Opin Neurobiol. 2015 Aug;33:34-9 [PMID: 25646932]
  4. J Parkinsons Dis. 2011;1(1):93-100 [PMID: 23939260]
  5. Cell. 2016 Jan 28;164(3):526-37 [PMID: 26824660]
  6. Neuron. 2022 May 4;110(9):1532-1546.e4 [PMID: 35180389]
  7. J Neurosci. 2021 Dec 15;41(50):10382-10404 [PMID: 34753740]
  8. Trends Neurosci. 1989 Oct;12(10):366-75 [PMID: 2479133]
  9. Exp Neurol. 2009 Dec;220(2):283-92 [PMID: 19744484]
  10. Neurobiol Dis. 2022 Jun 1;167:105674 [PMID: 35245676]
  11. Curr Opin Neurol. 2013 Dec;26(6):662-70 [PMID: 24150222]
  12. Cereb Cortex. 2011 Jun;21(6):1362-78 [PMID: 21045003]
  13. Nat Neurosci. 2015 Sep;18(9):1299-1309 [PMID: 26237365]
  14. J Neurosci. 2018 Jul 18;38(29):6563-6573 [PMID: 29934350]
  15. Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2545-50 [PMID: 21257908]
  16. Neuron. 2021 May 19;109(10):1721-1738.e4 [PMID: 33823137]
  17. Clin Neurophysiol. 2008 Jul;119(7):1459-74 [PMID: 18467168]
  18. Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16791-6 [PMID: 18922773]
  19. Cereb Cortex. 2009 Sep;19(9):2065-77 [PMID: 19174446]
  20. Neuropharmacology. 2004 Oct;47(5):706-13 [PMID: 15458842]
  21. Mov Disord. 2019 Aug;34(8):1130-1143 [PMID: 31216379]
  22. Cereb Cortex. 2021 Jun 10;31(7):3408-3425 [PMID: 33676368]
  23. Front Comput Neurosci. 2013 Nov 11;7:163 [PMID: 24273509]
  24. Brain Res. 1991 Apr 26;547(1):152-61 [PMID: 1677608]
  25. Elife. 2016 Dec 20;5: [PMID: 27995895]
  26. Trends Neurosci. 1999 Feb;22(2):51-61 [PMID: 10092043]
  27. Exp Neurol. 2009 Nov;220(1):162-70 [PMID: 19703443]
  28. Trends Neurosci. 1990 Jul;13(7):281-5 [PMID: 1695404]
  29. Mol Psychiatry. 2022 Dec;27(12):5124-5134 [PMID: 36075962]
  30. J Neurosci. 2021 Jun 23;41(25):5553-5565 [PMID: 34006589]
  31. J Neurosci. 2014 Nov 26;34(48):15836-50 [PMID: 25429126]
  32. Nature. 2021 Oct;598(7879):174-181 [PMID: 34616072]
  33. J Neurosci. 2015 Feb 4;35(5):2293-307 [PMID: 25653383]
  34. J Neurosci. 2008 Jun 18;28(25):6483-92 [PMID: 18562619]
  35. J Neurosci. 2015 Jan 21;35(3):1211-6 [PMID: 25609635]
  36. J Neurosci. 2001 Apr 1;21(7):2393-403 [PMID: 11264313]
  37. eNeuro. 2021 Oct 18;8(5): [PMID: 34556558]
  38. Cell Rep. 2017 Aug 22;20(8):1867-1880 [PMID: 28834750]
  39. J Neurosci. 2019 Nov 27;39(48):9660-9672 [PMID: 31641050]
  40. Neuron. 2019 Mar 20;101(6):1042-1056 [PMID: 30897356]
  41. J Neurosci. 2002 Jun 1;22(11):4639-53 [PMID: 12040070]
  42. Science. 2006 Jun 16;312(5780):1622-7 [PMID: 16778049]
  43. Cereb Cortex. 2013 Aug;23(8):1965-77 [PMID: 22761308]
  44. J Neurosci. 2016 Apr 13;36(15):4196-208 [PMID: 27076419]
  45. J Pharmacol Exp Ther. 2008 Jun;325(3):850-8 [PMID: 18310474]
  46. J Neurophysiol. 2001 Jul;86(1):249-60 [PMID: 11431506]
  47. Nature. 2020 Jan;577(7790):386-391 [PMID: 31875851]
  48. J Neurosci. 2013 Jan 9;33(2):748-60 [PMID: 23303952]
  49. eNeuro. 2019 Jul 10;6(4): [PMID: 31235466]
  50. J Neurosci. 2008 Jan 2;28(1):50-9 [PMID: 18171922]
  51. Neuron. 2016 Mar 16;89(6):1173-1179 [PMID: 26948893]
  52. Exp Brain Res. 2015 May;233(5):1365-75 [PMID: 25633321]
  53. Curr Biol. 2021 Sep 27;31(18):4148-4155.e4 [PMID: 34302741]
  54. Neuron. 2017 Sep 13;95(6):1306-1318.e5 [PMID: 28910619]
  55. Nat Neurosci. 2007 May;10(5):663-8 [PMID: 17435752]
  56. Cereb Cortex. 2014 Jan;24(1):81-97 [PMID: 23042738]
  57. Cell Rep. 2019 Jul 23;28(4):992-1002.e4 [PMID: 31340159]
  58. Mov Disord. 2021 Jul;36(7):1565-1577 [PMID: 33606292]
  59. PLoS One. 2020 Jun 19;15(6):e0234930 [PMID: 32559228]
  60. Mov Disord. 1999 Jan;14(1):45-9 [PMID: 9918343]
  61. Neuron. 2017 Aug 30;95(5):1181-1196.e8 [PMID: 28858620]
  62. Brain. 2016 Jan;139(Pt 1):127-43 [PMID: 26490335]
  63. J Neurosci. 2008 Mar 19;28(12):3090-102 [PMID: 18354012]
  64. Jpn J Physiol. 1998 Aug;48(4):275-90 [PMID: 9757144]
  65. Nat Rev Neurosci. 2013 Apr;14(4):278-91 [PMID: 23511908]

Grants

  1. R01 NS121371/NINDS NIH HHS

MeSH Term

Animals
Mice
Pyramidal Tracts
Motor Neurons
Parkinsonian Disorders
Parkinson Disease
Basal Ganglia
Receptors, N-Methyl-D-Aspartate

Chemicals

Receptors, N-Methyl-D-Aspartate

Word Cloud

Created with Highcharts 10.0.0neuronsoutputsmotorM1corticalparkinsonismexcitationDAbasalPDcontributeparkinsonianadaptationscellsubtype-thalamicpyramidaltractPTlevelreducedthalamocorticalDegenerationmidbraindopaminergicaltersconnectivityfunctionalityganglia-thalamocorticalcircuitsParkinson'sdiseaseParticularlyaberrantprimarycortexdeficitsHowevercellularsynapticlevelsremainpoorlyunderstoodUsingmultidisciplinaryapproachesfounddegenerationinducesinput-specificreductionmolecularidentified-methyl-d-aspartateNMDAreceptorsplaykeyrolemediatingcircuitshowedtransmissionmicecanrescuedchemogeneticallysuppressinggangliaTogetherdatasuggestsynapse-specificalteredimportantaspectspathophysiologyReduced

Similar Articles

Cited By