Extracellular MicroRNAs as Potential Biomarkers for Frail Kidney Phenotype: Progresses and Precautions.

Chia-Ter Chao, Chih-Kang Chiang, Kuan-Yu Hung
Author Information
  1. Chia-Ter Chao: Nephrology division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
  2. Chih-Kang Chiang: Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan.
  3. Kuan-Yu Hung: Nephrology division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.

Abstract

Frailty describes the cumulative subtle health deficits leading to an increased vulnerability to insults among older individuals or disease-laden ones. The prevalence of frailty increases substantially and relentlessly over declining renal function. Frailty in patients with chronic kidney disease (CKD) carries kidney-specific risk factors, clinical correlates and outcomes associations, hence alternatively termed frail kidney phenotype by researchers. Pathogenetically, miRNAs participate extensively in the development and aggravation of frailty, including the occurrence of frail kidney phenotype in CKD patients. These understandings spark profound interest in discovering biomarkers for identifying this detrimental phenotype, and extracellular miRNAs emerge as potentially useful ones. Pilot studies identify promising miRNA candidates for evaluating intermediates and surrogates of frail kidney phenotype, and more are underway. Several potential miRNA species in biologic fluids, such as circulating miR-29b and miR-223 (as inflammatory markers), exosomal miR-16-5p, miR-17/92 cluster members, and miR-106-5p (for uremic vasculopathy), serum exosomal miR-203a-3p (for uremic sarcopenia) have been examined and can be promising choices. Nonetheless, there remains research gap in affirming the direct connections between specific miRNAs and frail kidney phenotype. This stems partially from multiple limitations less well acknowledged before. From this perspective, we further outline the limitations and precautions prior to validating specific extracellular miRNA(s) for this purpose, from the definition of frailty definition, the functional and tissue specificity of miRNAs, the severity of CKD, and various technical considerations. It is expected that more affirmative studies can be produced for extending the utility of extracellular miRNAs in predicting frail kidney phenotype.

References

  1. Circ Res. 2023 Feb 17;132(4):415-431 [PMID: 36700539]
  2. Am J Physiol Cell Physiol. 2020 Aug 1;319(2):C419-C431 [PMID: 32639875]
  3. PeerJ. 2017 Jul 10;5:e3542 [PMID: 28713653]
  4. J Gerontol A Biol Sci Med Sci. 2001 Mar;56(3):M146-56 [PMID: 11253156]
  5. Endocrinology. 2023 Aug 1;164(9): [PMID: 37453100]
  6. Front Aging Neurosci. 2021 Nov 12;13:763110 [PMID: 34867290]
  7. Hemodial Int. 2023 Oct;27(4):444-453 [PMID: 37318050]
  8. Mol Cells. 2005 Feb 28;19(1):1-15 [PMID: 15750334]
  9. Genes (Basel). 2022 Jan 26;13(2): [PMID: 35205276]
  10. Nucleic Acids Res. 2019 Jan 8;47(D1):D155-D162 [PMID: 30423142]
  11. Front Nutr. 2019 Jun 12;6:91 [PMID: 31249834]
  12. Front Cardiovasc Med. 2021 Feb 22;8:624313 [PMID: 33693036]
  13. J Diabetes Complications. 2020 Feb;34(2):107492 [PMID: 31806427]
  14. Genome Res. 2009 Jan;19(1):92-105 [PMID: 18955434]
  15. Biochem Pharmacol. 2023 Feb;208:115407 [PMID: 36596414]
  16. Diabet Med. 2021 Jul;38(7):e14566 [PMID: 33772857]
  17. Int Urol Nephrol. 2020 Feb;52(2):363-370 [PMID: 31975149]
  18. Aging Dis. 2023 Feb 1;14(1):21-24 [PMID: 36818552]
  19. Front Med (Lausanne). 2022 Feb 15;9:799544 [PMID: 35242777]
  20. Cardiovasc Diabetol. 2018 Sep 27;17(1):130 [PMID: 30261879]
  21. Sci Adv. 2022 Oct 21;8(42):eabq2226 [PMID: 36260670]
  22. Nephrol Dial Transplant. 2022 Sep 22;37(10):1935-1943 [PMID: 34601609]
  23. Exp Gerontol. 2019 Sep;124:110637 [PMID: 31199979]
  24. Transpl Int. 2014 Dec;27(12):1222-32 [PMID: 24963540]
  25. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):5003-8 [PMID: 21383194]
  26. Biochem Soc Trans. 2012 Aug;40(4):886-90 [PMID: 22817753]
  27. J Am Soc Nephrol. 2011 Nov;22(11):2068-76 [PMID: 21965375]
  28. Mech Ageing Dev. 2002 Sep;123(11):1457-60 [PMID: 12425952]
  29. Z Gerontol Geriatr. 2023 Dec;56(8):697-702 [PMID: 36580105]
  30. Semin Cell Dev Biol. 2024 Feb 15;154(Pt C):305-315 [PMID: 36241561]
  31. J Transl Med. 2023 Feb 2;21(1):67 [PMID: 36726153]
  32. J Cachexia Sarcopenia Muscle. 2018 Aug;9(4):755-770 [PMID: 29582582]
  33. ESMO Open. 2023 Jun;8(3):101573 [PMID: 37263082]
  34. J Am Med Dir Assoc. 2021 Mar;22(3):535-543.e7 [PMID: 33218914]
  35. Front Public Health. 2023 May 10;11:1154809 [PMID: 37234757]
  36. Theranostics. 2019 Mar 7;9(7):1864-1877 [PMID: 31037144]
  37. Ther Adv Drug Saf. 2021 Jun 11;12:20420986211014639 [PMID: 34178301]
  38. Clin J Am Soc Nephrol. 2013 Aug;8(8):1421-8 [PMID: 23788617]
  39. J Cachexia Sarcopenia Muscle. 2022 Feb;13(1):68-85 [PMID: 34984856]
  40. Clin Gerontol. 2021 Mar-Apr;44(2):143-153 [PMID: 33100186]
  41. Br J Cancer. 2017 Mar 14;116(6):762-774 [PMID: 28152545]
  42. PLoS One. 2011;6(9):e24145 [PMID: 21909417]
  43. Nat Cell Biol. 2007 Jun;9(6):654-9 [PMID: 17486113]
  44. Lancet. 2019 Oct 12;394(10206):1365-1375 [PMID: 31609228]
  45. BMC Geriatr. 2017 Dec 02;17(1):277 [PMID: 29197341]
  46. J Am Med Dir Assoc. 2017 May 1;18(5):374-382 [PMID: 28238676]
  47. Clin Exp Hypertens. 2020 Nov 16;42(8):743-747 [PMID: 32631160]
  48. Gerontology. 2016;62(2):182-90 [PMID: 26227153]
  49. J Am Geriatr Soc. 2007 May;55(5):780-91 [PMID: 17493201]
  50. Sci Rep. 2022 Oct 21;12(1):17663 [PMID: 36271135]
  51. Ther Adv Chronic Dis. 2019 Oct 05;10:2040622319880382 [PMID: 31632625]
  52. Clin J Am Soc Nephrol. 2012 Apr;7(4):619-23 [PMID: 22344502]
  53. Cardiovasc Res. 2021 Jul 7;117(8):1958-1973 [PMID: 32866261]
  54. J Am Heart Assoc. 2020 Sep 15;9(18):e017308 [PMID: 32875940]
  55. J Immunol. 2019 Apr 15;202(8):2372-2383 [PMID: 30833349]
  56. J Cell Mol Med. 2020 May;24(9):4900-4912 [PMID: 32281300]
  57. J Am Heart Assoc. 2019 Jan 22;8(2):e010805 [PMID: 30646802]
  58. Nephrol Dial Transplant. 2011 Nov;26(11):3794-802 [PMID: 21891774]
  59. Clin Chem. 2011 Jun;57(6):833-40 [PMID: 21487102]
  60. Int J Mol Sci. 2021 Jun 10;22(12): [PMID: 34200937]
  61. Kaohsiung J Med Sci. 2023 Apr;39(4):318-325 [PMID: 36866657]
  62. Front Genet. 2013 Nov 12;4:214 [PMID: 24273550]
  63. Arterioscler Thromb Vasc Biol. 2017 Jul;37(7):1402-1414 [PMID: 28522697]
  64. Arch Gerontol Geriatr. 2023 Mar;106:104870 [PMID: 36442406]
  65. Ageing Res Rev. 2019 Dec;56:100960 [PMID: 31518686]
  66. BJGP Open. 2020 May 1;4(1): [PMID: 32184213]
  67. Trends Biochem Sci. 2012 Nov;37(11):460-5 [PMID: 22944280]

MeSH Term

Humans
MicroRNAs
Biomarkers
Frailty
Renal Insufficiency, Chronic
Phenotype
Kidney

Chemicals

MicroRNAs
Biomarkers

Word Cloud

Created with Highcharts 10.0.0kidneyphenotypefrailmiRNAsfrailtyCKDextracellularmiRNAFrailtyonespatientsstudiespromisingexosomaluremiccanspecificlimitationsdefinitiondescribescumulativesubtlehealthdeficitsleadingincreasedvulnerabilityinsultsamongolderindividualsdisease-ladenprevalenceincreasessubstantiallyrelentlesslydecliningrenalfunctionchronicdiseasecarrieskidney-specificriskfactorsclinicalcorrelatesoutcomesassociationshencealternativelytermedresearchersPathogeneticallyparticipateextensivelydevelopmentaggravationincludingoccurrenceunderstandingssparkprofoundinterestdiscoveringbiomarkersidentifyingdetrimentalemergepotentiallyusefulPilotidentifycandidatesevaluatingintermediatessurrogatesunderwaySeveralpotentialspeciesbiologicfluidscirculatingmiR-29bmiR-223inflammatorymarkersmiR-16-5pmiR-17/92clustermembersmiR-106-5pvasculopathyserummiR-203a-3psarcopeniaexaminedchoicesNonethelessremainsresearchgapaffirmingdirectconnectionsstemspartiallymultiplelesswellacknowledgedperspectiveoutlineprecautionspriorvalidatingspurposefunctionaltissuespecificityseverityvarioustechnicalconsiderationsexpectedaffirmativeproducedextendingutilitypredictingExtracellularMicroRNAsPotentialBiomarkersFrailKidneyPhenotype:ProgressesPrecautions

Similar Articles

Cited By