Seasonally-reversed trends in the subtropical Northwestern Pacific linked to asymmetric AMO influences.

Yong-Fu Lin, Chuen-Teyr Terng, Chau-Ron Wu, Jin-Yi Yu
Author Information
  1. Yong-Fu Lin: Department of Earth System Science, University of California, Irvine, CA, USA.
  2. Chuen-Teyr Terng: Central Weather Bureau, Taipei, Taiwan.
  3. Chau-Ron Wu: Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan.
  4. Jin-Yi Yu: Department of Earth System Science, University of California, Irvine, CA, USA. jyyu@uci.edu.

Abstract

This study identifies seasonally-reversed trends in Kuroshio strength and sea surface temperatures (SSTs) within the western North Pacific (WNP) since the 1990s, specifically in the 22° N-28° N region. These trends are characterized by increases during summer and decreases during winter. The seasonally-reversed trends are a result of the asymmetric responses of the WNP to a shift towards the positive phase of the Atlantic multidecadal oscillation (AMO) around the same period. The positive AMO induces an anomalous descent over the North Pacific during summer, leading to the direct strengthening of the gyre. However, during winter, it triggers an anomalous descent over the tropical Pacific, which excites a poleward wavetrain impacting the WNP and causing gyre weakening. The associated responses of the East Asian monsoon and China Coastal Current contribute to the observed seasonally-reversed SST trends. It is noteworthy that the seasonally-reversed trends in gyre strength and SSTs are predominantly observed north of 20° N in the WNP. This limitation arises because the anomalous cyclone within the winter poleward wavetrain is located north of this latitude boundary. Specifically, the clearest trends in gyre strength are observed in the northern segment of the Kuroshio, while the manifestation of SST trends in the Taiwan Strait could potentially be attributed to the influence and enhancement of the East Asian monsoon and the China Coastal Current. Due to the limited length of observational data, statistical significance of some of the signals discussed is rather limited. A CESM1 pacemaker experiments is further conducted to confirm the asymmetric responses of the North Pacific to the AMO between the summer and winter seasons.

References

  1. Merrifield, M. A. A shift in Western Tropical pacific sea level trends during the 1990s. J. Clim. 24, 4126–4138 (2011). [DOI: 10.1175/2011JCLI3932.1]
  2. Qiu, B. & Chen, S. Multidecadal sea level and gyre circulation variability in the Northwestern tropical pacific ocean. J. Phys. Oceanogr. 42, 193–206 (2012). [DOI: 10.1175/JPO-D-11-061.1]
  3. Lee, E.-J., Ha, K.-J. & Jhun, J.-G. Interdecadal changes in interannual variability of the global monsoon precipitation and interrelationships among its subcomponents. Clim. Dyn. 42, 2585–2601 (2014). [DOI: 10.1007/s00382-013-1762-4]
  4. Yu, J.-Y. et al. Linking emergence of the Central Pacific El Niño to the Atlantic multidecadal oscillation. J. Clim. 28, 651–662 (2015). [DOI: 10.1175/JCLI-D-14-00347.1]
  5. Larkin, N. K. & Harrison, D. E. On the definition of El Niño and associated seasonal average US weather anomalies. Geophys. Res. Lett. 32, L13705 (2005). [DOI: 10.1029/2005GL022738]
  6. Ashok, K., Behera, S. K., Rao, S. A., Weng, H. & Yamagata, T. E. Niño Modoki and its possible teleconnection. J. Geophys. Res. 112, C11007 (2007).
  7. Kao, H.-Y. & Yu, J.-Y. Contrasting eastern-pacific and central-pacific types of ENSO. J. Clim. 22, 615–632 (2009). [DOI: 10.1175/2008JCLI2309.1]
  8. Kug, J.-S., Jin, F.-F. & An, S.-I. Two types of El Niño events: Cold tongue El Niño and Warm Pool El Niño. J. Clim. 22, 1499–1515 (2009). [DOI: 10.1175/2008JCLI2624.1]
  9. Capotondi, A. et al. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 96, 921–938 (2015). [DOI: 10.1175/BAMS-D-13-00117.1]
  10. Nitani, H. Beginning of the Kuroshio. In Kuroshio, Physical Aspect of the Japan Current (1972).
  11. Hsin, Y.-C., Qiu, B., Chiang, T.-L. & Wu, C.-R. Seasonal to interannual variations in the intensity and central position of the surface Kuroshio east of Taiwan. J. Geophys. Res. Oceans 118, 4305–4316 (2013). [DOI: 10.1002/jgrc.20323]
  12. Wu, C.-R. Interannual modulation of the Pacific decadal oscillation (PDO) on the low-latitude western North Pacific. Prog. Oceanogr. 110, 49–58 (2013). [DOI: 10.1016/j.pocean.2012.12.001]
  13. Wu, C.-R., Chang, Y.-L., Oey, L.-Y., Chang, C.-W.J. & Hsin, Y.-C. Air-sea interaction between tropical cyclone Nari and Kuroshio. Geophys. Res. Lett. 35, 3942 (2008). [DOI: 10.1029/2008GL033942]
  14. Tsukamoto, K. Spawning of eels near a seamount. Nature 439, 929–929 (2006). [PMID: 16495988]
  15. Han, Y. et al. Biogeographic distribution of the eel Anguilla luzonensis: Dependence upon larval duration and oceanic currents. Mar. Ecol. Prog. Ser. 551, 227–238 (2016). [DOI: 10.3354/meps11728]
  16. Chang, Y.-L., Sheng, J., Ohashi, K., Béguer-Pon, M. & Miyazawa, Y. Impacts of interannual ocean circulation variability on Japanese eel larval migration in the western North Pacific Ocean. PLoS ONE 10, e0144423 (2015). [PMID: 26642318]
  17. Chang, Y.-L.K., Miyazawa, Y., Miller, M. J. & Tsukamoto, K. Potential impact of ocean circulation on the declining Japanese eel catches. Sci. Rep. 8, 5496 (2018). [PMID: 29615739]
  18. Lin, Y.-F., Wu, C.-R. & Han, Y.-S. A combination mode of climate variability responsible for extremely poor recruitment of the Japanese eel (Anguilla japonica). Sci. Rep. 7, 44469 (2017). [PMID: 28300135]
  19. Lin, Y.-F. & Wu, C.-R. Distinct impacts of the 1997–98 and 2015–16 extreme El Niños on Japanese eel larval catch. Sci. Rep. 9, 1384 (2019). [PMID: 30718909]
  20. Hsiung, K.-M., Lin, Y.-T. & Han, Y.-S. Current dependent dispersal characteristics of Japanese Glass Eel around Taiwan. J. Mar. Sci. Eng. 10, 98 (2022). [DOI: 10.3390/jmse10010098]
  21. Chen, C. The Kuroshio Intermediate Water is the Major Source of Nutrients on the East China Sea Continental Shelf Vol. 19 (Oceanologica Acta, 1996).
  22. Oey, L.-Y., Hsin, Y.-C. & Wu, C.-R. Why does the Kuroshio northeast of Taiwan shift shelfward in winter? Ocean Dyn. 60, 413–426 (2010). [DOI: 10.1007/s10236-009-0259-5]
  23. Wu, C.-R., Hsin, Y.-C., Chiang, T.-L., Lin, Y.-F. & Tsui, I.-F. Seasonal and interannual changes of the Kuroshio intrusion onto the East China Sea Shelf. J. Geophys. Res. Oceans 119, 5039–5051 (2014). [DOI: 10.1002/2013JC009748]
  24. Lai, C.-C. et al. Phytoplankton and bacterial responses to monsoon-driven water masses mixing in the Kuroshio Off the East Coast of Taiwan. Front. Mar. Sci. 8, 807 (2021). [DOI: 10.3389/fmars.2021.707807]
  25. Lui, H.-K. et al. Intrusion of Kuroshio helps to diminish coastal hypoxia in the coast of Northern South China Sea. Front. Mar. Sci. 7, 952 (2020). [DOI: 10.3389/fmars.2020.565952]
  26. Qiu, B. & Lukas, R. Seasonal and interannual variability of the North equatorial current, the Mindanao current, and the Kuroshio along the Pacific western boundary. J. Geophys. Res. Oceans 101, 12315–12330 (1996). [DOI: 10.1029/95JC03204]
  27. Kuo, Y.-C. & Lee, M.-A. Decadal variation of wintertime sea surface temperature in the Taiwan Strait. J. Mar. Sci. Technol. 21, 15 (2013).
  28. Zhang, R. & Delworth, T. L. Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett. 34, 31601 (2007). [DOI: 10.1029/2007GL031601]
  29. Sun, C. et al. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat. Commun. 8, 15998 (2017). [PMID: 28685765]
  30. Ruprich-Robert, Y. et al. Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Clim. 30, 2785–2810 (2017). [DOI: 10.1175/JCLI-D-16-0127.1]
  31. Dong, B., Sutton, R. T. & Scaife, A. A. Multidecadal modulation of El Niño-Southern oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys. Res. Lett. 33, L08705 (2006). [DOI: 10.1029/2006GL025766]
  32. Lu, R., Dong, B. & Ding, H. Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon. Geophys. Res. Lett. 33, L24701 (2006). [DOI: 10.1029/2006GL027655]
  33. Sutton, R. T. & Hodson, D. L. R. Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Clim. 20, 891–907 (2007). [DOI: 10.1175/JCLI4038.1]
  34. Lyu, K., Yu, J.-Y. & Paek, H. The influences of the Atlantic multidecadal oscillation on the mean strength of the north pacific subtropical high during Boreal winter. J. Clim. 30, 411–426 (2017). [DOI: 10.1175/JCLI-D-16-0525.1]
  35. Wu, C.-R., Lin, Y.-F., Wang, Y.-L., Keenlyside, N. & Yu, J.-Y. An Atlantic-driven rapid circulation change in the North Pacific Ocean during the late 1990s. Sci. Rep. 9, 14411 (2019). [PMID: 31595019]
  36. Yao, S., Zhou, W., Jin, F. & Zheng, F. North Atlantic as a trigger for pacific-wide decadal climate change. Geophys. Res. Lett. 48, 719 (2021). [DOI: 10.1029/2021GL094719]
  37. Meehl, G. A. et al. Atlantic and Pacific tropics connected by mutually interactive decadal-timescale processes. Nat. Geosci. 14, 36–42 (2021). [DOI: 10.1038/s41561-020-00669-x]
  38. Johnson, Z. F., Chikamoto, Y., Wang, S.-Y.S., McPhaden, M. J. & Mochizuki, T. Pacific decadal oscillation remotely forced by the equatorial Pacific and the Atlantic Oceans. Clim. Dyn. 55, 789–811 (2020). [DOI: 10.1007/s00382-020-05295-2]
  39. Wallace, J. M. & Gutzler, D. S. Teleconnections in the geopotential height field during the northern hemisphere winter. Mon. Weather Rev. 109, 784–812 (1981). [DOI: 10.1175/1520-0493(1981)109<0784]
  40. Belkin, I. M. & Lee, M. A. Long-term variability of sea surface temperature in Taiwan Strait. Clim. Change 124, 821–834 (2014). [DOI: 10.1007/s10584-014-1121-4]
  41. Wu, C.-R., Chao, S.-Y. & Hsu, C. Transient, seasonal and interannual variability of the Taiwan Strait current. J. Oceanogr. 63, 821–833 (2007). [DOI: 10.1007/s10872-007-0070-1]
  42. Guan, B. & Fang, G. Winter counter-wind currents off the southeastern China coast: A review. J. Oceanogr. 62, 1–24 (2006). [DOI: 10.1007/s10872-006-0028-8]
  43. Zhang, G., Wang, X., Xie, Q., Chen, J. & Chen, S. Strengthening impacts of spring sea surface temperature in the north tropical Atlantic on Indian Ocean dipole after the mid-1980s. Clim. Dyn. 59, 185–200 (2022). [DOI: 10.1007/s00382-021-06128-6]
  44. Wang, L., Yu, J.-Y. & Paek, H. Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun. 8, 14887 (2017). [PMID: 28317857]
  45. Miyazawa, Y. et al. Water mass variability in the western North Pacific detected in a 15-year eddy resolving ocean reanalysis. J. Oceanogr. 65, 737–756 (2009). [DOI: 10.1007/s10872-009-0063-3]
  46. Enfield, D. B., Mestas-Nuñez, A. M. & Trimble, P. J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett. 28, 2077–2080 (2001). [DOI: 10.1029/2000GL012745]
  47. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on Salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997). [DOI: 10.1175/1520-0477(1997)078<1069]
  48. Li, J. & Zeng, Q. A new monsoon index, its interannual variability and relation with monsoon precipitation. Clim. Environ. Res. 10, 351–365 (2005).
  49. Li, J. & Zeng, Q. A new monsoon index and the geographical distribution of the global monsoons. Adv. Atmos. Sci. 20, 299–302 (2003). [DOI: 10.1007/s00376-003-0016-5]
  50. Li, J. & Zeng, Q. A unified monsoon index. Geophys. Res. Lett. 29, 1–4 (2002). [DOI: 10.1029/2001GL013874]
  51. Yang, S., Lau, K.-M. & Kim, K.-M. Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. J. Clim. 15, 306–325 (2002). [DOI: 10.1175/1520-0442(2002)015<0306]
  52. Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M. & Bladé, I. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 12(7), 1990–2009 (1999). [DOI: 10.1175/1520-0442(1999)012<1990]

Grants

  1. AGS-2109539/US's Climate and Large-Scale Dynamics Program of National Science Foundation
  2. IISI-202924/Central Weather Bureau of Taiwan

Word Cloud

Created with Highcharts 10.0.0trendsPacificseasonally-reversedWNPwinterAMOgyrestrengthNorthsummerasymmetricresponsesanomalousobservedKuroshioSSTswithinNpositivedescentpolewardwavetrainEastAsianmonsoonChinaCoastalCurrentSSTnorthlimitedstudyidentifiesseasurfacetemperatureswesternsince1990sspecifically22°N-28°regioncharacterizedincreasesdecreasesresultshifttowardsphaseAtlanticmultidecadaloscillationaroundperiodinducesleadingdirectstrengtheningHowevertriggerstropicalexcitesimpactingcausingweakeningassociatedcontributenoteworthypredominantly20°limitationarisescyclonelocatedlatitudeboundarySpecificallyclearestnorthernsegmentmanifestationTaiwanStraitpotentiallyattributedinfluenceenhancementDuelengthobservationaldatastatisticalsignificancesignalsdiscussedratherCESM1pacemakerexperimentsconductedconfirmseasonsSeasonally-reversedsubtropicalNorthwesternlinkedinfluences

Similar Articles

Cited By